On the dimension of the Lie group of automorphisms of a paracontact metric manifold
https://doi.org/10.22405/2226-8383-2024-25-5-244-253
Abstract
It has been proved that the dimension of the Lie group of automorphisms of a (2𝑛 + 1)- dimensional smooth manifold endowed with the paracontact metric structure (𝜂, 𝜉, 𝜙, 𝑔) does not exceed (𝑛+1)^2, where 𝜂 is a differential 1-form defining the contact 2𝑛-dimensional distribution 𝐻 = ker𝜂, 𝜉 is a Reeb vector field, 𝜙 is a structural endomorphism, 𝑔 is a pseudo-Riemannian metric whose restriction to the contact distribution 𝐻 has signature (𝑛, 𝑛). The analysis of the conditions for the invariance of the paracontact metric structure with respect to infinitesimal automorphisms, as well as using the Darboux atlas, in each chart of which the contact form
𝜂 has a canonical form, allows us to state that the isotropy group induced by the stationary subgroup of the point 𝑝(0, ..., 0), rotates only vectors lying in the contact plane 𝐻𝑝, and leaves invariant the pseudo-Euclidean metric and the symplectic structure defined by the differential 2-form Ω = 𝑑𝜂. So the maximum dimension of the Lie algebra of the isotropy group is 𝑛^2. Since the dimension of the translation subgroup does not exceed the dimension of the manifold,
the dimension of the automorphism group does not exceed 𝑛2 + 2𝑛 + 1. The paper also proves that the maximum dimension of the Lie algebra of infinitesimal automorphisms is equal to (𝑛 + 1)^2. An example of a paracontact metric manifold admitting a Lie algebra of infinitesimal automorphisms of maximum dimension is the generalized Heisenberg group endowed with a canonical para-Sasakian structure. The basis vector fields of this algebra are found.
About the Authors
Vladimir Ivanovich Pan’zhenskiiRussian Federation
candidate of physical and mathematical sciences
Olga Petrovna Surina
Russian Federation
candidate of physical and mathematical sciences
References
1. Sato, I. 1976, “On a structure similar to the almost contact structure”, Tensor (N. S.), vol. 30, pp. 219–224.
2. Kaneyuki, S. & Willams, F. L. 1985, “Almost paracontact and parahodge structure on
3. manifolds”, Nagoya Mathematics Journal, vol. 99, pp. 173–187.
4. doi: 10.1017/S0027763000021565.
5. Matsumoto, K. 1989, “On Lorentzian paracontact manifolds”, Bulletin of the Yamagata
6. University. Natural Science, vol. 12, no 2, pp. 151–156.
7. Diatta, A. 2008, “Left invariant contact structures on Lie groups”, Differential Geometry and
8. Its Applications, vol. 26, no. 5, pp. 544–552. doi: 10.1016/j.difgeo.2008.04.001.
9. Zamkovoy, S. 2009, “Canonical connections on paracontact manifolds”, Annals of Global
10. Analysis and Geometry, vol. 36. pp. 37–60. doi:10.1007/s10455-008-9147-3.
11. Tripathi, M. M., Kılı¸c, E., Perkta¸s, S. Y. & Kele¸s, S. 2010, “Indefinite almost paracontact metric manifolds”, International Journal of Mathematics and Mathematical Sciences, vol. 2010, 19 p. doi: 10.1155/2010/846195.
12. Eftal, B., Kili¸c, E. & Perkta¸s, S. 2012, “Some curvature conditions on a para-Sasakian
13. manifold with canonical paracontact connection”, International Journal of Mathematics and
14. Mathematical Sciences, vol. 2012, 24 p. doi: 10.1155/2012/395462.
15. Calvaruso, G. 2013, “Three-dimensional homogeneous almost contact metric structures”,
16. Journal of Geometry and Physics, vol. 69, pp. 60–73. doi: 10.1016/j.geomphys.2013.03.001.
17. Calvaruso, G. & Mart´ın-Molina, V. 2015, “Paracontact metric structures on the unit tangent
18. sphere bundle”, Annali di Matematica Pura ed Applicata (1923-), vol. 194, pp. 1359–1380. doi: 10.1007/s10231-014-0424-4.
19. Calvaruso, G. & Perrone, A. 2014, “Left-invariant hypercontact structures on three-dimensional Lie groups”, Periodica Mathematica Hungarica, vol. 69, pp. 97–108. doi: 10.1007/s10998-014-0054-z.
20. Calvaruso, G. & Perrone, A. 2016, “Five-dimensional paracontact Lie algebras”, Differential Geometry and Its Applications, vol. 45, pp. 115–129. doi: 10.1016/j.difgeo.2016.01.001.
21. Uygun, P. & At¸ceken, M. 2023, “A (𝑘, 𝜇)-paracontact metric manifolds satisfying curvature
22. conditions”, Earthline Journal of Mathematical Sciences, vol. 14, no. 2, pp. 175–190. doi:
23. 34198/ejms.14224.175190.
24. Uygun, P. & At¸ceken, M. 2023, “A (𝑘, 𝜇)-paracontact metric manifolds satisfying curvature
25. conditions”, Turkish Journal of Mathematics and Computer Science, vol. 15, no. 1, pp. 171–179. doi: 10.47000/tjmcs.1153650.
26. Tanno, S. 1969, “The automorphism groups of almost contact Riemannian manifolds”, Tohoku Mathematical Journal, vol. 21, no. 1, pp. 21–38. doi: 10.2748/tmj/1178243031.
27. Blair, D. E. 1976, “Contact manifolds in Riemannian geometry. Lecture notes in mathematics”, Berlin; Heidelberg; New York: Springer-Verlag, Vol. 509, 148 p. doi: 10.1007/BFb0079307.
28. Smolentsev, N. K. 2019, “Left-invariant para-sasakian structures on Lie groups”, Vestnik
29. Tomskogo gosudarstvennogo universiteta. Matematika i mexanika (Tomsk State University
30. Journal of Mathematics and Mechanics), no. 62, pp. 27–37. doi: 10.17223/19988621/62/3.
31. Smolentsev, N. K. & Shagabudinova, I. Y. 2021, “On Parasasakian structures on fivedimensional Lie algebras”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mexanika (Tomsk State University Journal of Mathematics and Mechanics), no. 69, pp. 37–52. doi: 10.17223/19988621/69/4.
32. Pan’zhenskii, V. I. & Rastrepina, A. O. 2022, “Left-invariant para-sasakian structure on the Heisenberg group”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mexanika (Tomsk State University Journal of Mathematics and Mechanics), no. 75, pp. 38–51. doi: 10.17223/19988621/75/4.
Review
For citations:
Pan’zhenskii V.I., Surina O.P. On the dimension of the Lie group of automorphisms of a paracontact metric manifold. Chebyshevskii Sbornik. 2024;25(5):244-253. (In Russ.) https://doi.org/10.22405/2226-8383-2024-25-5-244-253