Topological foundations of three-dimensional symmetry breaking dynamics for both Abelian and non-abelian Higgs models
https://doi.org/10.22405/2226-8383-2024-25-5-228-236
Abstract
We examine the role that geometrical and topological concepts have played in the recent development of theoretical physics, particularly in the areas of superstring theory and non-Abelian gauge theories. We also demonstrate the importance of these concepts for a better comprehension of the physics’ dynamical laws. In this paper, we present a numerical study of the three-dimensional symmetry breaking dynamics for both non-abelian and abelian Higgs
models. The non-trivial topology of the manifold of vacuum field configurations is the source of the topological excitations in the abelian Higgs model and in the other field theoretic models that
will be discussed. In three-dimensional multicomponent lattice Abelian-Higgs (LAH) models
minimally connected to a noncompact Abelian gauge field, we study the topological phase changes that occur in these models.
About the Authors
Eman AlmukhurJordan
Abeer Adaileh
Jordan
Tala Sasa
Jordan
Abeer Al-Nana
Saudi Arabia
References
1. Bick, E. & Steffen, F. D. 2005, “Topology and Geometry in Physics”, LNP, vol. 659, Springer, Berlin Heidelberg.
2. Peskin, M. & Schroeder, D. 1995, “An Introduction to Quantum Field Theory”, 1st edn, CRC Press, Boulder. Available at: https://doi.org/10.1201/9780429503559
3. Weinberg, S. “The Quantum Theory Of Fields”, 1st edn, Cambridge University Press. Available at: https://doi.org/10.1017/CBO9781139644167
4. Zinn-Justin, J. 2002, “Quantum Field Theory and Critical Phenomena”, 4-th edn, Carendon
5. Press, Oxford.
6. Wald, R. 1984, “General Relativity”, University of Chicago Press, Chicago.
7. Bertlmann, R. A. 2000, “Anomalies in Quantum Field Theory”, Oxford University Press, Oxford. Available at: https://doi.org/10.1093/acprof:oso/9780198507628.001.0001
8. Coleman, S. 1985, “Aspects of Symmetry”, Cambridge University Press, Cambridge. Available at: https://doi.org/10.1017/CBO9780511565045
9. Nielsen, H. B. & Olesen, P. 1973, “Vortex-line models for dual strings”, Nuclear Physics B, vol. 61, pp. 45–61. Available at: https://doi.org/10.1016/0550-3213(73)90350-7
10. Edward, W. 1985, “Superconducting strings”, Nuclear Physics B, vol. 249, no. 4, pp. 557-592.
11. Serway, R. & Jewett, J. 2012, “Principles of physics: a calculus-based text”, 5-th ed, Cengage Learning.
12. Anderson, P. 1984, “Basic Notions of Condensed Matter Physics”, The Benjamin/Cummings Publishing Company, Menlo Park, California.
13. Wen, X. 2004, “Quantum field theory of many-body systems: from the origin of sound to an origin of light and electrons”, Oxford University Press.
14. Nakahara, M. 2003, “Geometry, Topology and Physics”, 2-nd ed, IOP Publishing, Bristol.
15. Schutz, B. 1980, “Geometrical Methods of Mathematical Physics”, Cambridge University Press, Cambridge.
16. Forkel, H. 2023, “A Primer on Instantons in QCD”. Available at: http://arxiv.org/abs/hepph/
17. v2
18. Qousini, M., Hdeib, H. & Almuhur, E. 2024, “Applications of Locally Compact Spaces in
19. Polyhedra: Dimension and Limits”, WSEAS Transactions on Mathematics, vol. 23, pp. 118-
20. Available at: http://dx.doi.org/10.37394/23206.2024.23.14
Review
For citations:
Almukhur E., Adaileh A., Sasa T., Al-Nana A. Topological foundations of three-dimensional symmetry breaking dynamics for both Abelian and non-abelian Higgs models. Chebyshevskii Sbornik. 2024;25(5):228-236. (In Russ.) https://doi.org/10.22405/2226-8383-2024-25-5-228-236