Preview

Chebyshevskii Sbornik

Advanced search

ON THE BAER-KAPLANSKY THEOREM FOR TORSION FREE GROUPS WITH QUADRATIC SPLITTING FIELDS

https://doi.org/10.22405/2226-8383-2014-15-1-77-88

Abstract

The connection between a structure of abelian group and a structure of endomorphism ring is a classic question in abelian group theory. In particular, Baer and Kaplansky proved that this connection is very strong for torsion groups: two abelian torsion groups are isomorphic if and only if their endomorphism ring are isomorphic. In more general cases for torsion-free and mixed abelian groups the Baer-Kaplansky theorem is fails. This paper deals with a class of p-local torsion-free abelian of finite rank. Let K be a field such that Q ⊂ K ⊂ Qbp and let R = K ∩ Zbp, where Zbp is the ring of p-adic integers, Qbp is the field of p-adic numbers, Q is the field of rational numbers. We say that K is a splitting field (R is a splitting ring) for a p-local torsion-free reduced group A or that group A is K-decomposable group if A ⊗Zp R is the direct sum of a divisible R-modules and a free R-modules. Torsion-free p-local abelian groups of finite rank with quadratic splitting field K are characterized. As an application it is proved that K-decomposable plocal torsion free abelian groups of finite rank are isomorphic if and only if their endomorphism rings are isomorphic.

 

About the Author

S. V. Vershina
Московский Педагогический Государственный Университет
Russian Federation


References

1. Фукс Л. Бесконечные абелевы группы. Т.1 — М.: Мир, 1977, 335 с.

2. Фукс Л. Бесконечные абелевы группы. Т.2 — М.: Мир, 1977, 416 с.

3. Фомин А. А. Тензорное произведение абелевых групп без кручения // Сиб. мат. журн. 1975. Т. 16,№4. С. 869–878.

4. Фарукшин В. Х. Локальные абелевы группы без кручения // Фундам. и прикл. мат. 2012. Т. 17, вып. 8. С. 147–152.

5. Baer R. Automorphism rings of primary abelian operator groups // Ann. Math., 44 (1943), 192–227.

6. Kaplansky. I. Some results on abelian groups // Proc. Nat. Acad. Sci. USA, 38, 538–540 (1952).

7. Mikhalev A. V. Isomorphisms and anti-isomorphisms of endomorphism rings of modules // Proc. Moscow-Tainan Algebra Workshop, Walter de Gruyter, Berlin, 1996, P. 65–116.

8. Себельдин А. М. Условия изоморфизма вполне разложимых абелевых групп без кручения с изоморфными кольцами эндоморфизмов // Мат. заметки. 1972. Т. 11, вып. 4. С. 402–408.

9. Blagoveshchenskaya E., Ivanov G., Schultz P. The Baer-Kaplansky theorem for almost completely decomposable groups // Contemp. Math. — 2001. — Vol. 273. — P. 85–93.

10. MayW. The theorem of Baer and Kaplansky for mixed modules // Journal of Algebra. — 1995. — Vol. 77(1). —P. 255–263.

11. Wolfson K. Isomorphism of the endomorphism rings of torsion-free modules // Proc. Amer. Math. Soc., 13 (1962), P. 712–714.

12. Files S. T., WicklessW., The Baer-Kaplansky theorem for a class of mixed abelian groups // Rocky Mountain J. Math., 26, No.2, P. 593–613 (1996).

13. WicklessW. J. The Baer-Kaplansky theorem to direct sums of self-small mixed groups // Abelian groups and modules (Dublin, 1998), Birk¨auser, Basel, 101– 106 (1999).

14. Lady E. L. Splitting fields for torsion-free modules over discrete valuation rings, I // Journal of Algebra. — 1977. — Vol. 49(1). — P. 261–275.

15. Lady E. L. Splitting fields for torsion-free modules over discrete valuation rings, II // Journal of Algebra. — 1980. — Vol. 66. — P. 281–306.

16. Lady E. L. Splitting fields for torsion-free modules over discrete valuation rings, III // Journal of Algebra. — 1980. — Vol. 66. — P. 307–320.

17. Вершина С. В. Группы расщепления неразложимых p-локальных групп без кручения. // Алгебра и логика: теория и приложения.: Материалы между- народной конференции, посвященной 80-летию В. П. Шункова. — Красно- ярск, 2013. С. 25–26.

18. Farukshin V. Kh. Local abelian torsion-free groups // Journal of Mathematical Sciences. — 2014. — Vol. 195(5). — P. 684–687.


Review

For citations:


Vershina S.V. ON THE BAER-KAPLANSKY THEOREM FOR TORSION FREE GROUPS WITH QUADRATIC SPLITTING FIELDS. Chebyshevskii Sbornik. 2014;15(1):77-88. (In Russ.) https://doi.org/10.22405/2226-8383-2014-15-1-77-88

Views: 538


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)