Complete classification of two classes of two-dimensional PI-algebras over any basic field
https://doi.org/10.22405/2226-8383-2024-25-5-164-182
Abstract
In the paper we give complete classification of two classes of two-dimensional 𝑃𝐼-algebras over any basic field. The choice of these two classes is predicted by the polynomial identities of the classes: the identity of one of them is given by using the binary operation of the algebra another one involves the bracket operation in the identity. The list of the representatives of isomorphism classes are provided. We compare our list with that obtained earlier, where such a classification was given under certain constraints on the basic field.
About the Authors
Isamiddin Sattarovich RakhimovUzbekistan
doctor of physical and mathematical sciences, professor
Hakim Jamil
Malaysia
doctor of physical and mathematical sciences
Nasir Rinie Narinie Mohd
Malaysia
doctor of physical and mathematical sciences
References
1. Ahmed, H., Bekbaev, U., Rakhimov, I. 2017, “Complete classification of two-dimensional
2. algebras”, AIP Conference Proceedings, 1830, pp. 070016. https://arxiv.org/abs/1702.08616.
3. Ahmed, H., Bekbaev, U., Rakhimov, I. 2020, “On identities on two-dimensional algebras”,
4. Lobachevskii Journal of Mathematics, 41(9), pp. 1615–1629.
5. Ahmed, H., Bekbaev, U., Rakhimov, I. 2020, “Subalgebras, idempotents, ideals and quasi-units of two-dimensional algebras”, International Journal of Algebra and Computation, 30(5), pp. 903–929.
6. Albeverio, S., Omirov, B.A., Rakhimov, I. 2006, “Classification of 4-dimensional nilpotent
7. complex Leibniz algebras”, Extracta Mathematicae, 21(3), pp. 197–210.
8. Bekbaev, U. 2023, “Classification of two-dimensional algebras over any basic field”, AIP
9. Conference Proceedings, 2880, pp. 030001, https://doi.org/10.1063/5.0165726.
10. Casas, J.-M., Insua, M., Ladra, M., Ladra, S. 2012, “An algorithm for the classification of 3-
11. dimensional complex Leibniz algebras”, Linear Algebra and its Applications, 9, pp. 3747–3756.
12. Demir, I., Misra, K.C., Stitzinger, E. 2016, “Classification of Some Solvable Leibniz Algebras”, Algebras and Representation Theory, 19, pp. 405–417.
13. Goze, M., Remm, E. 2011, “2-dimensional algebras”, African Journal of Mathematical Physics, 10, pp. 81–91.
14. Jacobson, N. 1962, Lie Algebras, (Interscience Publishers, Wiley, New York).
15. Kashuba, I., Martin, M.E. 2017, “Geometric classification of nilpotent Jordan algebras of
16. dimension five”, Journal of Pure and Applied Algebra, DOI:10.1016/j.jpaa.2017.04.018.
17. Kaygorodov, I., Volkov, Y. 2019, “The variety of 2-dimensional algebras over an algebraically closed field”, Canadian Journal of Mathematics, 71(4), pp. 819–842.
18. Kobayashi, Y., Shirayanagi, K., Tsukada, M., Takahasi, S.E. 2021, “A complete classification of three-dimensional algebras over R”, Asian-European Journal of Mathematics, 14(8), pp. 2150131, DOI:10.1142/S179355712150131X.
19. Khudoyberdiyev, A.Kh., Rakhimov, I.S., Said Husain, Sh.K. 2014, “On classification of 5-
20. dimensional solvable Leibniz algebras”, Linear Algebra and its Applications, 457, pp. 428–454.
21. Mazzola, G. 1979, “The algebraic and geometric classification of associative algebras of
22. dimension five”, Manuscripta Math., 27, pp. 1–21.
23. Morozov, V.V. 1958, “Classification of nilpotent Lie algebras of dimension 6”, Isv. Vysch.
24. Uchebn. Zaved. Mat., 4:5, pp. 161–17 (in Russian).
25. Mubarakzjanov, G.M. 1963, “On solvable Lie algebras”, Izv. Vyssh. Uchebn. Zaved. Mat., 32(1), pp. 114–123 (in Russian).
26. Mubarakzjanov, G.M. 1963, “Classification of real structures of Lie algebras of fifth order”, Izv. Vyssh. Uchebn. Zaved. Mat., 34(3), pp. 99–106 (in Russian).
27. Mubarakzjanov, G.M. 1963, “Classification of solvable Lie algebras of sixth order with nonnilpotent basis elements”, Izv. Vyssh. Uchebn. Zaved. Mat., 35(4), pp. 104–116 (in Russian).
28. Petersson, H.P. 2000, “The classification of two-dimensional nonassociative algebras”, Result. Math., 3, pp. 120–154.
Review
For citations:
Rakhimov I.S., Jamil H., Mohd N.R. Complete classification of two classes of two-dimensional PI-algebras over any basic field. Chebyshevskii Sbornik. 2024;25(5):164-182. (In Russ.) https://doi.org/10.22405/2226-8383-2024-25-5-164-182