ON THE BAER-KAPLANSKY THEOREM FOR TORSION FREE GROUPS WITH QUADRATIC SPLITTING FIELDS
https://doi.org/10.22405/2226-8383-2014-15-1-77-88
Abstract
The connection between a structure of abelian group and a structure of endomorphism ring is a classic question in abelian group theory. In particular, Baer and Kaplansky proved that this connection is very strong for torsion groups: two abelian torsion groups are isomorphic if and only if their endomorphism ring are isomorphic. In more general cases for torsion-free and mixed abelian groups the Baer-Kaplansky theorem is fails. This paper deals with a class of p-local torsion-free abelian of finite rank. Let K be a field such that Q ⊂ K ⊂ Qbp and let R = K ∩ Zbp, where Zbp is the ring of p-adic integers, Qbp is the field of p-adic numbers, Q is the field of rational numbers. We say that K is a splitting field (R is a splitting ring) for a p-local torsion-free reduced group A or that group A is K-decomposable group if A ⊗Zp R is the direct sum of a divisible R-modules and a free R-modules. Torsion-free p-local abelian groups of finite rank with quadratic splitting field K are characterized. As an application it is proved that K-decomposable plocal torsion free abelian groups of finite rank are isomorphic if and only if their endomorphism rings are isomorphic.
References
1. Фукс Л. Бесконечные абелевы группы. Т.1 — М.: Мир, 1977, 335 с.
2. Фукс Л. Бесконечные абелевы группы. Т.2 — М.: Мир, 1977, 416 с.
3. Фомин А. А. Тензорное произведение абелевых групп без кручения // Сиб. мат. журн. 1975. Т. 16,№4. С. 869–878.
4. Фарукшин В. Х. Локальные абелевы группы без кручения // Фундам. и прикл. мат. 2012. Т. 17, вып. 8. С. 147–152.
5. Baer R. Automorphism rings of primary abelian operator groups // Ann. Math., 44 (1943), 192–227.
6. Kaplansky. I. Some results on abelian groups // Proc. Nat. Acad. Sci. USA, 38, 538–540 (1952).
7. Mikhalev A. V. Isomorphisms and anti-isomorphisms of endomorphism rings of modules // Proc. Moscow-Tainan Algebra Workshop, Walter de Gruyter, Berlin, 1996, P. 65–116.
8. Себельдин А. М. Условия изоморфизма вполне разложимых абелевых групп без кручения с изоморфными кольцами эндоморфизмов // Мат. заметки. 1972. Т. 11, вып. 4. С. 402–408.
9. Blagoveshchenskaya E., Ivanov G., Schultz P. The Baer-Kaplansky theorem for almost completely decomposable groups // Contemp. Math. — 2001. — Vol. 273. — P. 85–93.
10. MayW. The theorem of Baer and Kaplansky for mixed modules // Journal of Algebra. — 1995. — Vol. 77(1). —P. 255–263.
11. Wolfson K. Isomorphism of the endomorphism rings of torsion-free modules // Proc. Amer. Math. Soc., 13 (1962), P. 712–714.
12. Files S. T., WicklessW., The Baer-Kaplansky theorem for a class of mixed abelian groups // Rocky Mountain J. Math., 26, No.2, P. 593–613 (1996).
13. WicklessW. J. The Baer-Kaplansky theorem to direct sums of self-small mixed groups // Abelian groups and modules (Dublin, 1998), Birk¨auser, Basel, 101– 106 (1999).
14. Lady E. L. Splitting fields for torsion-free modules over discrete valuation rings, I // Journal of Algebra. — 1977. — Vol. 49(1). — P. 261–275.
15. Lady E. L. Splitting fields for torsion-free modules over discrete valuation rings, II // Journal of Algebra. — 1980. — Vol. 66. — P. 281–306.
16. Lady E. L. Splitting fields for torsion-free modules over discrete valuation rings, III // Journal of Algebra. — 1980. — Vol. 66. — P. 307–320.
17. Вершина С. В. Группы расщепления неразложимых p-локальных групп без кручения. // Алгебра и логика: теория и приложения.: Материалы между- народной конференции, посвященной 80-летию В. П. Шункова. — Красно- ярск, 2013. С. 25–26.
18. Farukshin V. Kh. Local abelian torsion-free groups // Journal of Mathematical Sciences. — 2014. — Vol. 195(5). — P. 684–687.
Review
For citations:
Vershina S.V. ON THE BAER-KAPLANSKY THEOREM FOR TORSION FREE GROUPS WITH QUADRATIC SPLITTING FIELDS. Chebyshevskii Sbornik. 2014;15(1):77-88. (In Russ.) https://doi.org/10.22405/2226-8383-2014-15-1-77-88
JATS XML






















