𝜎_Ω-foliated Fitting classes of multioperator 𝑇-groups and its satellites
https://doi.org/10.22405/2226-8383-2024-25-5-16-31
Abstract
In 2001, V.A. Vedernikov and M.M. Sorokina proposed a functional approach to the construction of formations and fitting classes of finite groups by considering, in addition to satellite functions, another type of functions - directions. As a result, 𝜔-fibered (Ω-foliated) formations and Fitting classes of finite groups were constructed, including the well-known 𝜔-
local (Ω-composite) formations and Fitting classes, where 𝜔 is a nonempty set of primes (Ω) — a nonempty subclass of the class of all simple groups). Further research has shown that the concept of foliation can be applied to the construction of foliated formations and Fitting classes of multioperator 𝑇-groups with finite composition series. A new idea in the functional approach of constructing classes of groups was proposed by A.N. Skiba. In a series of articles, he developed the 𝜎-theory of finite groups, where 𝜎 is an arbitrary partition of the set of all primes, and applied its methods to the construction of 𝜎-local formations. Classes generalizing 𝜔-fibered
and Ω-foliated formations and Fitting classes of finite groups were constructed on the basis of the
𝜎-methods. We define classes generalizing the foliated Fitting classes of multioperator T-groups
with composite series and study their minimal and inner satellites.
About the Author
Ekaterina Nikolaevna BazhanovaRussian Federation
сandidate of physical and mathematical sciences
References
1. Gasch¨utz, W., 1963. “Zur Theorie der endlichen aufl¨osbaren Gruppen”, Math. Zeitschr., vol. 80, pp. 300–305.
2. Нartley, B., 1969. “On Fischer’s dualization of formation theory”, Proc. London Math. Soc., vol. 19, iss. 3, pp. 193–207.
3. Skiba, A. N., Shemetkov, L. A., 1999. “Partially composition formations of finite groups”,
4. Doclady of the national academy of science of Belarus, vol. 43, no. 4, pp. 5–8.
5. Vedernikov, V. A., Sorokina, M. M., 2001. “Ω-Foliated formations and Fitting classes of finite groups”, Discrete Math. Appl., vol. 11, no. 5, pp. 507–527.
6. Vedernikov, V.A., Sorokina, M. M., 2002. “𝜔-Fibered Formations and Fitting Classes of Finite Groups”, Mathematical Notes, vol. 71, no. 1, pp. 39–55.
7. Vedernikov, V. A., Demina, E. N., 2010. “Ω-Foliated formations of multioperator 𝑇-groups”,
8. Siberian Math. Journal, vol. 51, no. 5, pp. 789–804.
9. Bazhanova, E. N., Vedernikov, V. A., 2017. “Ω-Foliated Fitting classes of 𝑇-groups”, Siberian Electronic Mathematical Reports, vol. 14, pp. 629–639.
10. Skiba, A. N., 2018. “On one generalization of the local formations”, Problems of Physics,
11. Mathematics and Technics, vol. 1, no. 34, P. 79–82.
12. Kamozina, O. V., 2020. “Ω𝜁-foliated Fitting classes”, Izvestiya Saratovskogo universiteta novaya seriya-Matematika Mekhanika Informatika, vol. 4, iss. 4, pp. 424–433.
13. Kamozina, O. V., 2020. “𝜔𝜎-fibered Fitting classes”, Chebyshevskii sbornik, vol. 21, no. 4, pp. С. 107–116.
14. Sorokina, M. M., Gorepekina, A. A., 2021. “𝜔-fibered formations of finite groups”, Chebyshevskii sbornik, vol. 22, no. 3, pp. 232–244.
15. Nesterov, A. S., Sorokina, M. M., 2023. “Construction of Ω-foliated formations of finite groups”, Uchenie zapiski Bryanskogo gosudarstvennogo universiteta, vol. 2, pp. 7–12.
16. Bazhanova, E. N., 2023. “Minimal satellites of Ω𝜎-foliated Fitting classes of multioperator 𝑇- groups”, Materiali II Vserossiiskoi nauchno-prakticheskoi konferencii «Matematika v sovremennom mire», posvyachennoi 160-letiu D.А. Grave, Vologda: VoSU, pp. 9–11.
17. Bazhanova, E. N., Sorokina, M. M., 2024. “𝜎Ω-foliated Fitting Classes of 𝑇-groups”, Materiali Mezhdynarodnoi nauchno-prakticheskoi konferencii «Matematicheskoe modelirovanie i novie obrazovatelnie tehnologii v matematike», Brest: BSU, pp. 6–9.
18. Higgins, P. J., 1956. “Groups with multiple operators”, Proc. London Math. Soc., vol. 6, iss. 3, pp. 366–416.
19. Kurosh, A. G., 2002. Lectures on general algebra, Lan, Saint-Petersburg, 556 p.
20. Shemetkov, L. A., Skiba, A. N., 1989. Formations of algebraic systems, Nauka, Moscow, 256 p.
21. Doerk, K., Нawkes, T., 1992. Finite soluble groups, Walter de Gruyter, Berlin, New Jork, 891 p.
22. Skiba, A. N., 1997. Алгебра формаций, Belarusskaya Nauka, Minsk, 240 p.
23. Vedernikov, V. A., 2001. “Maximal satellites of Ω-foliated formations and Fitting classes”, Proc. Steklov Inst. Math., vol. 2, pp. 217–233.
Review
For citations:
Bazhanova E.N. 𝜎_Ω-foliated Fitting classes of multioperator 𝑇-groups and its satellites. Chebyshevskii Sbornik. 2024;25(5):16-31. (In Russ.) https://doi.org/10.22405/2226-8383-2024-25-5-16-31