Preview

Chebyshevskii Sbornik

Advanced search

Simulation of nonlinear effective thermal conductivity using CAE Fidesys

https://doi.org/10.22405/2226-8383-2024-25-4-308-328

Abstract

This article is devoted to the numerical estimation of the effective thermal conductivity coefficients of heterogeneous media. An estimation algorithm is described, modified for the non-linear case (when the thermal properties of the material components depend on the temperature). Using the Fidesys CAE system, linear calculations are performed to estimate the effective thermal conductivity coefficients of construction heat-insulating composites made of polymer reinforced with hollow glass microspheres. The cases of simple cubic packing of filler particles and their random distribution in the matrix are investigated. The modified algorithm is implemented as a research software module for solving non-linear problems of estimating effective thermal conductivity. Using it, model problems of estimating non-linear effective thermal conductivity for orthogonally reinforced and particle-reinforced composites are solved. The configuration of an orthogonally reinforced composite is revealed, the effective
thermal conductivity of which does not depend on temperature. A significantly non-monotonic dependence of the effective thermal conductivity on temperature is obtained for a particlereinforced
composite.

About the Authors

Maxim Yakovlevich Yakovlev
Lomonosov Moscow State University
Russian Federation

candidate of physical and mathematical sciences



Nikita Sergeevich Elfimov
Lomonosov Moscow State University
Russian Federation

postgraduate student



Vladimir Anatolievich Levin
Lomonosov Moscow State University
Russian Federation

doctor of physical and mathematical sciences



References

1. Biderman, V. L., Guslitser, R. L., Zakharov, S. P., Nenakhov, B. V., Seleznev, I. I. and Tsukerberg, S. M. 1963, “Automobile tires (design, calculation, testing, operation). Edited by Biderman, V. L.”, Moscow: State Scientific and Technical Publishing House of Chemical Literature.

2. Pobedrya, B. E.. 1984, “Mechanics of composite materials”, Moscow: Moscow University Publishing House.

3. Hashin, Z. and Shtrikman, S. 1962, “On some variational principles in anisotropic and nonhomogeneous elasticity”, Journal of the Mechanics and Physics of Solids, vol. 10, pp. 335-342.

4. Hashin, Z. and Shtrikman, S. 1963, “A variational approach to the theory of the elastic behavior of multiscale materials”, Journal of the Mechanics and Physics of Solids, vol. 11, pp. 127-140.

5. Smit, R. J. M., Brekelmans, W. A. M. and Meijer, H. E. H. 1998, “Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling”, Computer Methods in Applied Mechanics and Engineering, vol. 155(1-2), pp.181-192.

6. Ponte Casta~neda, P. and Willis, J. R. 1999, “Variational second-order estimates for nonlinear composites”, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 455(1985), pp. 1799–1811.

7. Talbot, D. R. S. and Willis, J. R. 2004, “Bounds for the effective constitutive relation of a nonlinear composite”, Proceedings of the Royal Society A, vol. 460, pp. 2705-2723.

8. Fish, J. 2011, “Multiscale modeling and simulation of composite materials and structures”, Lecture Notes in Applied and Computational Mechanics, vol. 55, pp. 215-231.

9. Pobedrya, B. E. and Sheshenin, S. V. 1997, “Three-dimensional modeling of the stressstrain state of pneumatic tires. VIII Symposium on the Problems of Tires and Rubber Cord Composites”, Moscow: NIISHP, pp. 320-325.

10. Maxwell J. C. 1904, “A treatise on electricity and magnetism”, Oxford University Press, Vol. I, 3rd Ed.

11. Hamilton, R. L. and Crosser, O. K. 1962, “Thermal conductivity of heterogeneous two component systems”, Industrial and Engineering Chemistry Fundamentals, vol. 1(3), pp. 187-191.

12. Nielsen, L. E. 1974, “The thermal and electrical conductivity of twophase systems”, Industrial and Engineering Chemistry Fundamentals, vol. 13(1), pp. 17-20.

13. Granqvist, C.G. and Hunderi O. 1978, “Conductivity of inhomogeneous materials: Effectivemedium theory with dipole-dipole interaction”, Physical Review B, vol. 18(4), pp. 1554-1561.

14. Benveniste, Y. and Miloh, T. 1986, “The effective conductivity of composites with imperfect thermal contact at constituent interfaces”, International Journal of Engineering Science, vol. 24(9), pp. 1537-1552.

15. Hasselman, D.P.H. and Johnson, L.F. 1987, “Effective thermal conductivity of composites with interfacial thermal barrier resistance”, Journal of Composite Materials, vol. 21(6), pp. 508-515.

16. Salazar, A., Terron, J. M., S´anchez-Lavega, A. and Celorrio, R. 2002, “On the effective thermal diffusivity of fiber-reinforced composites”, Applied Physics Letters, vol. 80(11), pp. 1903-1905.

17. Mityushev, V., Obnosov, Y., Pesetskaya, E. and Rogosin, S. 2008 “Analytical methods for heat conduction in composites”, Mathematical Modelling and Analysis, vol. 13(1), pp. 67-78.

18. Vdovichenko, I.I., Yakovlev, M.Ya., Vershinin, A.V. and Levin, V.A. 2016, “Calculation of the effective thermal properties of the composites based on the finite element solutions of the boundary value problems”, IOP Conf. Series: Materials Science and Engineering, vol. 158(1), 012094. http://iopscience.iop.org/article/10.1088/1757-899X/158/1/012094

19. Yakovlev, M.Ya., Tanasevich, P.S., Vershinin, A.V., Levin, V.A. 2022, “Numerical analysis of the effective thermal properties and the stability for NTE metamaterials using CAE fidesys”, AIP Conference Proceedings, vol. 2509, doi: 10.1063/5.0084835

20. Fidesys LLC official website: http://cae-fidesys.com/

21. Levin, V.A., Zingerman, K.M., Vershinin, A.V., Yakovlev, M.Ya. 2015, “Numerical analysis of effective mechanical properties of rubber-cord composites under finite strains”, Composite Structures, vol. 131, pp. 25–36.

22. Vershinin, A.V., Levin, V.A., Zingerman, K.M., Sboychakov, A.M. and Yakovlev, M.Ya. 2015, “Software for estimation of second order effective material properties of porous samples with geometrical and physical nonlinearity accounted for”, Advances in Engineering Software, vol. 86, pp. 80–84.

23. Yakovlev, M.Ya., Lukyanchikov, I.S., Levin, V.A., Vershinin, A.V. and Zingerman K.M. 2019, “Calculation of the effective properties of the prestressed nonlinear elastic heterogeneous materials under finite strains based on the solutions of the boundary value problems using finite element method”, Journal of Physics: Conference Series, vol. 1158(4), 042037. https://iopscience.iop.org/article/10.1088/1742-6596/1158/4/042037

24. Konovalov, D.A. and Yakovlev, M.Ya. 2017, “Numerical estimation of effective elastic properties of elastomer composites under finite strains using spectral element method with CAE Fidesys”, Chebyshevskii Sbornik, vol. 18(3), pp. 316–329.

25. Levin, V.A., Vdovichenko, I.I., Vershinin, A.V., Yakovlev, M.Y. and Zingerman, K.M. 2017, “An approach to the computation of effective strength characteristics of porous materials”, Letters on Materials, vol. 7(4), pp. 452-454. https://doi.org/10.22226/2410-3535-2017-4-452-454

26. Levin, V.A., Zingerman, K.M., Yakovlev, M.Ya., Kurdenkova, E.O. and Nemtinova, D.V. 2019, “Estimation of Effective Properties of Periodic Cellular Structures using Beam and Shell Finite Elements with CAE Fidesys”, Chebyshevskii Sbornik, vol. 20, no. 2, pp. 528–541.

27. Levin, V.A., Vdovichenko, I.I., Vershinin, A.V., Yakovlev, M.Ya. and Zingerman, K.M. 2016, “Numerical Estimation of Effective Mechanical Properties for Reinforced Plexiglas in the Two-Dimensional Case”, Modelling and Simulation in Engineering, vol. 2016, doi: 10.1155/2016/9010576

28. Wang, H., Hou, F. and Chang, C. 2020, “Experimental and computational modeling of thermal conductivity of cementitious syntactic foams filled with hollow glass microspheres”, Construction and Building Materials, vol. 265, 120739. https://doi.org/10.1016/j.conbuildmat.2020.120739.

29. Solovyev, S. A., Solovyeva, O. V., Akhmetova, I. G., Vankov, Yu. V. and Shakurova, R. Z. 2022, “Numerical investigation of the thermal conductivity of a composite heat-insulating material with microgranules”, Energy Problems, vol. 24(1), pp. 86-98. https://doi.org/10.30724/1998-9903-2022-24-1-86-98.

30. Liu, B., Wang, H. and Qin, Q. 2018, “Modelling and characterization of effective thermal conductivity of single hollow glass microsphere and its powder”, Materials, vol. 11(1), Article ID: 133. https://doi.org/10.3390/ma11010133.

31. Wang, H., Ma, C., Yuan, Y., Chen, Y., Liu, T. and Wang, N. 2023, “Lightweight insulating oilwell cement filled with hollow glass microspheres and numerical simulation of its unsteady heat transfer process”, Advanced Composites and Hybrid Materials, vol. 7, Article ID: 98. https://doi.org/10.1007/s42114-024-00902-w

32. Weast, R. C. 1967, “Handbook of Chemistry and Physics”, Cleveland: The Chemical Rubber Co., 48th Edition., pp. 1967-1968.

33. Touloukian, Y. S., Powell, R. W., Ho, C. Y. and Klemens, P. G. 1970, “Thermophysical and Electronic Properties Information and Analysis Center”, The TPRC Data Series, vol. 1: Thermal Conductivity - Metallic Elements and Alloys.

34. Chen, Y., Marakhovsky, P. S. and Malysheva, G. V. 2018, “Determination of the thermophysical properties of epoxy materials during their curing process”, Proceedings of VIAM, vol. 9, pp. 119-123. https://doi.org/10.18577/2307-6046-2018-0-9-119-123

35. Zingerman, K.M. and Levin, V.A. 2009, “Redistribution of finite elastic strains after the formation of inclusions. Approximate analytical solution”, Journal of Applied Mathematics and Mechanics, vol. 73(6), pp. 710-721. https://doi.org/10.1016/j.jappmathmech.2010.01.011

36. Moulas, E., Podladchikov, Y., Zingerman, K., Vershinin, A. and Levin, V. 2023, “Largestrain Elastic and Elasto-Plastic Formulations for Host-Inclusion Systems and Their Applications in Thermobarometry and Geodynamics”, American Journal of Science, vol. 323, 2. https://doi.org/10.2475/001c.68195


Review

For citations:


Yakovlev M.Ya., Elfimov N.S., Levin V.A. Simulation of nonlinear effective thermal conductivity using CAE Fidesys. Chebyshevskii Sbornik. 2024;25(4):308-328. (In Russ.) https://doi.org/10.22405/2226-8383-2024-25-4-308-328

Views: 60


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)