Preview

Chebyshevskii Sbornik

Advanced search

Comparison of approximate solutions to the quasi-static plate loading problem, obtained by the structural functions method and the finite element method

https://doi.org/10.22405/2226-8383-2024-25-4-175-196

Abstract

This paper is aimed on comparison of two types of quasistatic linear elasticity problem approximate solutions. The problem of a multilayered composite rectangular plate bending is considered; the layers of the plate are supposed to be orthotropic, and orthotropy axes are supposed to be parallel to the sides of the plate; the edges of the plate are simply supported. The structural functions method is the main method considered in this paper: this method is in computing the displacements in the abovementioned inhomogeneous plate as a weighted sum of spatial derivatives of the displacements in a homogeneous plate of the same geometry under the same to the inhomogeneous one loadings – that homogeneous plate is called a concomitant one. The coefficients of that weighted sum are named structural functions. In this paper, we pass through all the necessary steps of the structural functions method and derive the formulae
for the structural functions of the first and the second order. Also, we present an approach to the choice of the concomitant body elastic characteristics, and compare it with one of the previous approaches. Approximate solutions of the above-stated problem via the structural
functions method of first and second order are numerically compared with the finite element method solutions (based on the 8-knot and 20-knot elements), and with well-known N. J. Pagano solution to the same problem in a three-dimensional statement.

About the Authors

Liubov Aleksandrovna Kabanova
Lomonosov Moscow State University
Russian Federation


Aleksandr Viacheslavovich Romanov
Lomonosov Moscow State University
Russian Federation


References

1. Gorbachev, V.I. 2000, “O predstavlenii reshenij linejnyh differencial’nyh uravnenij s peremennymi koefficientami”, Vestnik Moskovskogo universiteta. Seriya 1: Matematika. Mekhanika., no 6, pp. 68–71.

2. Gorbachev, V.I. 1991, “Metod tenzorov Grina dlya resheniya kraevyh zadach teorii uprugosti neodnorodnyh sred”, Vychislitel’naya mekhanika deformiruemogo tverdogo tela., vol. 2, no. 2, pp. 61–76.

3. Gorbachev, V.I. 2009, “Integral’nye formuly v simmetrichnoj i nesimmetrichnoj uprugosti”, Vestnik Moskovskogo universiteta. Seriya 1. Matematika. Mekhanika., no. 6, pp. 52–56.

4. Nowacki, W. 1975, “Teoria uprugosti.”, M.: Mir.

5. Gorbachev, V.I. 2011, “Dinamicheskie zadachi mekhaniki kompozitov”, Izvestiya Rossijskoj akademii nauk. Seriya fizicheskaya., vol. 75, no. 1, pp. 117–122.

6. Gorbachev, V.I. 2017, “O rasprostranenii tepla v neodnorodnom sterzhne s peremennym poperechnym secheniem”, Vestnik Moskovskogo universiteta. Seriya 1. Matematika. Mekhanika., no. 2, pp. 48–54.

7. Gorbachev, V.I. 2014. “Integral’nye formuly v svyazannoj zadache termouprugosti neodnorodnogo tela. Primenenie v mekhanike kompozitov”, Prikladnaya matematika i mekhanika., vol. 78, no 2, pp. 277–299.

8. Gorbachev, V.I. Emel’yanov, A., N., 2014. “Osrednenie uravnenij momentnoj teorii uprugosti neodnorodnogo tela”, Izvestiya Rossijskoj akademii nauk. Mekhanika tverdogo tela., no. 1, pp. 95–107.

9. Gorbachev, V.I. Moskalenko, O.B. 2012 “Ustojchivost’ sterzhnej s peremennoj zhestkost’yu pri szhatii raspredelennoj nagruzkoj”, Vestnik Moskovskogo universiteta. Seriya 1. Matematika. Mekhanika., no. 1, pp. 41–47.

10. Gorbachev, V.I. 2016, “Inzhenernaya teoriya soprotivleniya neodnorodnyh sterzhnej iz kompozicionnyh materialov”, Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. NE Baumana. Seriya «Estestvennye nauki»., no. 6 (69), pp. 56–72.

11. Gorbachev, V.I. 2016, “Inzhenernaya teoriya deformirovaniya neodnorodnyh plastin iz kompozicionnyh materialov”, Mekhanika kompozicionnyh materialov i konstrukcij., vol. 22, no. 4, pp. 585–601.

12. Gorbachev, V.I. 2019, “About a Problem of Sturm–Liuvill”, Lobachevskii Journal of Mathematics., vol. 42, pp. 1829–1836.

13. Gorbachev, V.I. 2019, “About one approach to a solution of linear differential equations with variable coefficients”, Lobachevskii Journal of Mathematics., vol. 40, pp. 969–980.

14. Gorbachev, V.I. 2022, “Effektivnye opredelyayushchie sootnosheniya neuprugih kompozitov”, Chebyshevskij sbornik., vol. 23, no. 3 (84), pp. 194–206.

15. Gorbachev, V.I. 2018, “Ob effektivnyh koefficientah uprugosti neodnorodnogo tela”, Izvestiya Rossijskoj akademii nauk. Mekhanika tverdogo tela., no. 4, pp. 115–126.

16. Solyaev, Y.O., Gorbachev, V.I. 2019, “Sopostavlenie metodov Mori-Tanaka i Gorbacheva-Pobedri v zadache opredeleniya effektivnyh svojstv kompozitov s p’ezoaktivnymi sfericheskimi vklyucheniyami”, Mekhanika kompozicionnyh materialov i konstrukcij., vol. 25, no. 1, pp. 57–75.

17. Gorbachev, V.I. 2020, “Differencial’nye uravneniya s peremennymi koefficientami v mekhanike neodnorodnyh tel”, Izvestiya Rossijskoj akademii nauk. Mekhanika tverdogo tela., no. 3, pp. 114–121.

18. Gorbachev, V.I., Gulin, V.V. 2021, “Tochnye resheniya nekotoryh zadach teorii uprugosti o ravnovesii neodnorodnoj po shirine, anizotropnoj polosy”, Kompozity i nanostruktury., vol. 13, no. 3-4, pp. 120-–126.

19. Kabanova, L.A. 2022, “The first-order structural functions method solution to the simply supported layered plate bending problem”, Lobachevskii Journal of Mathematics., vol. 43, no. 7, pp. 1866–1877.

20. Kabanova, L.A. 2023, “Metod strukturnyh funkcij v reshenii zadachi ob izgibe linejno-uprugoj ortotropnoj svobodno opertoj na konture plastiny”, XIII Vserossijskij s"ezd po teoreticheskoj i prikladnoj mekhanike., pp. 885–888.

21. Kabanova, L.A. 2022, “Sopostavlenie priblizhenij resheniya zadachi ob izgibe linejno-uprugoj sloistoj plastiny, poluchennyh metodom strukturnyh funkcij”, CHebyshevskij sbornik., vol. 23, no. 4 (85), pp. 211–232.

22. Bakhvalov, N.S. 1975, “Osrednenie differencial’nyh uravnenij s chastnymi proizvodnymi s bystro oscilliruyushchimi koefficientami”, Doklady Akademii nauk. – Rossijskaya akademiya nauk, vol. 221, no. 3. pp. 516–519.

23. Bakhvalov, N.S., Panasenko, G.P. 1984, “Osrednenie processov v periodicheskih sredah.”

24. Pobedrya, B.E., Osmanov, S.E. 2007, “Opredelyayushchie sootnosheniya momentnoj teorii uprugosti”, Vestnik Moskovskogo universiteta. Seriya 1: Matematika. Mekhanika., no. 3, pp. 56–58.

25. Vlasov, A.N. 2021, “Svedenie uravneniya teorii uprugosti so sluchajnymi koefficientami na oblasti s periodicheskoj strukturoj k usrednennomu uravneniyu teorii uprugosti s postoyannymi koefficientami. effektivnyj tenzor zhestkosti”, Mekhanika kompozicionnyh materialov i konstrukcij., vol. 27, no. 3, pp. 309–322.

26. Pagano, N.J. 1970, “Exact solutions for rectangular bidirectional composites and sandwich plates”, Journal of composite materials., vol. 4, no. 1, pp. 20–34.

27. Lezgy-Nazargah, M., Salahshuran, S. 2018, “A new mixed-field theory for bending and vibration analysis of multi-layered composite plate”, Archives of Civil and Mechanical Engineering., vol. 18, no. 3, pp. 818–832.

28. Allam, M.N.M., Zenkour, A.M., El-Mekawy, H.F. 2010, “Bending response of inhomogeneous fiber-reinforced viscoelastic sandwich plates”, Acta Mechanica., vol. 209, pp. 231–248.

29. Zenkour, A.M., El-Mekawy, H.F. 2014, “Bending of inhomogeneous sandwich plates with viscoelastic cores”, Journal of Vibroengineering., vol. 16, no. 7, pp. 3260–3272.

30. Carrera, E. 2003, “Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and benchmarking”, Archives of Computational Methods in Engineering., vol. 10, pp. 215–296.

31. Carrera, E. 2000, “An assessment of mixed and classical theories on global and local response of multilayered orthotropic plates”, Composite structures., vol. 50, no. 2, pp. 183–198.

32. Pobedrya, B.E. 1995, “Chislennue metody v teorii uprugosti i plastichnosti: Uch. posobue. 2-e izd.”, M.: Izd-vo MGU.

33. Ciarlet, P. 1978, “The finite element method for elliptic problems.”, New York. Oxford.

34. Nikabadze, M.U. 2023, “Razvitie metoda ortogonalnuh polinomov v mehanike micropolyarnuh i klassicheskih uprugih tonkih tel.” M.: Izd-vo MGU imeny M.V. Lomonosova.

35. Romanov, A.V. 2022, “A Variational Principle of Lagrange of the Micropolar Theory of Elasticity in the Case of Transversely Isotropic Medium.”, Moscow Univ. Mech. Bull., no. 77, pp. 93—98. https://doi.org/10.3103/S0027133022040045

36. Romanov, A.V. 2023, “On the Variational Principle of Lagrange of the Micropolar Elasticity Theory in the Case of Orthotropic Medium.”, Moscow Univ. Mech. Bull., no. 78, pp. 23–28. https://doi.org/10.3103/S0027133023010041

37. Romanov, A.V. 2023, “On the Variational Principle of Lagrange in the Micropolar Theory of Elasticity at Nonisothermal Processes.”, Moscow Univ. Mech. Bull., no. 78, pp. 114-–118.

38. https://doi.org/10.3103/S0027133023040052

39. Romanov, A.V. 2024, “Reduced and selective integration method for micropolar theory of elasticity.”, Moscow Univ. Mech. Bull., no. 79, pp. 65–69. https://dx.doi.org/10.55959/MSU0579-9368-1-65-1-8

40. Pobedrya, B.E., Georgievsky, D.V. 2018, “Lekcii po teorii uprugosti”, M.: Lenland, pp. 208.

41. Zienkiewicz, O.C., Taylor, R.L., Zhu, J.Z. 2013, “The Finite Element Method: Its Basis and Fundamentals. 7th ed.”, Oxford: Butterworth-Heinemann.


Review

For citations:


Kabanova L.A., Romanov A.V. Comparison of approximate solutions to the quasi-static plate loading problem, obtained by the structural functions method and the finite element method. Chebyshevskii Sbornik. 2024;25(4):175-196. (In Russ.) https://doi.org/10.22405/2226-8383-2024-25-4-175-196

Views: 53


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)