Error of approximate integration and interpolation on classes of functions defined by monoids of natural numbers
https://doi.org/10.22405/2226-8383-2024-25-4-74-105
Abstract
The paper provides answers to the following questions:
First, the question is in which case the harmonic numbers from the class (𝑀_s)^𝛼 do not fall into the lattice of linear comparison solutions corresponding to the parallelepipedal grid. As a result, a new object of research has appeared – the intersection of the lattice of linear comparison solutions corresponding to a parallelepipedal grid and a multidimensional mononoid defining a class of functions.
Secondly, what do the boundary functions of these classes look like for parallelepipedal grids. Here we did not get a simple finite form in the form of an expression from elementary functions, but only an expression in the form of series according to the general theory. The
estimation of the error of approximate integration on the class 𝑀𝛼
𝑠 is associated with the study of a new number-theoretic object – the hyperbolic zeta function of the intersection of the lattice of solutions of linear comparison and a multidimensional monoid defining a class of functions. Here it was possible to obtain an analogue of the enhanced Bakhvalov–Korobov theorem.
Finally, the third question is related to the fact that parallelepipedal grids are interpolationtype grids: what is the error of interpolation polynomials for valid parallelepipedal grids in the case of the monoid 𝑀𝑞,1. The answer here is as follows: interpolation formulas for
parallelepipedal grids are accurate only for some trigonometric polynomials, in which all harmonics fall into the complete system of deductions of the fundamental lattice by the sublattice of solutions of the corresponding linear comparison. In general, the error estimate is
similar to the estimates for the Korobov class.
Keywords
About the Authors
Nikolay Nikolaevich Dobrovo’lskiiRussian Federation
candidate of physical and mathematical sciences
Nikolay Mikhailovich Dobrovol’skii
Russian Federation
doctor of physical and mathematical sciences, professor
Yuri Alexandrovich Basalov
Russian Federation
candidate of physical and mathematical sciences
Irina Yuryevna Rebrova
Russian Federation
candidate of physical and mathematical sciences
References
1. Dobrovol’skaya, L.P., Dobrovol’skii, N.M. & Simonov, А.S. 2008, “On the error of approximate integration over modified grids”, Chebyshevskii sbornik, vol. 9, no. 1(25), pp. 185–223.
2. Dobrovol’skii, M.N. 2003, “Estimates of sums over a hyperbolic cross”, Izvestie Tul’skogo gosudarstvennogo universiteta. Seriya: Matematika. Mekhanika. Informatika, vol. 9, no. 1, pp. 82-90.
3. Dobrovol’skii, M.N., Dobrovol’skii, N.N., Dobrovol’skii, N.M. 2023, “On the accuracy of quadrature formulas with optimal parallelepipedal grids”, Chebyshevskii sbornik, vol. 24, no. 4, pp. 35–40.
4. Dobrovol’skii, N.M. 1984, “The hyperbolic Zeta function of lattices”, Dep. v VINITI, no. 6090–84.
5. N. M. Dobrovolsky, A. R. Yesayan, O. V. Andreeva, N. V. Zaitseva, 2004, “Multidimensional number-theoretic Fourier interpolation”, Chebyshevskii sbornik, vol. 5, iss. 1(9), pp. 122–143.
6. Dobrovol’skii, N. M. & Manokhin, E.V. 1998, “Banach spaces of periodic functions”, Izvestiya TulGU. Seriya Matematika. Mekhanika. Informatika, vol. 4, no. 3, pp. 56–67.
7. Dobrovol’skii, N. N. 2007, “Deviation of two-dimensional Smolyak grids”, Chebyshevskii sbornik, vol. 8, no. 1(21), pp. 110–152.
8. Dobrovol’skii, N. N. 2013, “On the hyperbolic parameter of the grid”, Bulletin of Tula State University. Natural sciences. Issue 2. Part 1. P. 6 — 18.
9. Dobrovol’skii, N.N., Dobrovol’skii, N.M., Rebrova, I.Yu., Rodionov, A.V. 2019, “Monoids of natural numbers in the numerical-theoretical method in the approximate analysis”, Chebyshevskii sbornik, vol. 20, no. 1, pp. 164–179.
10. Korobov, N. M. 1959, “The evaluation of multiple integrals by method of optimal coefficients”, Vestnik Moskovskogo universiteta, no. 4, pp. 19–25.
11. Korobov, N. M. 1959, “On approximate computation of multiple integrals”, Doklady Аkademii nauk SSSR, vol. 124, no. 6, pp. 1207–1210.
12. Korobov, N. M. 1963, “Teoretiko-chislovye metody v priblizhennom analize [Number-theoretic methods in approximate analysis]”, Fizmat-giz, Moscow, Russia.
13. Korobov, N. M. 2004, “Teoretiko-chislovye metody v priblizhennom analize [Number-theoretic methods in approximate analysis]”, 2nd ed, MTSNMO, Moscow, Russia.
14. Korobov, N.M., Dobrovol’skii, M.N., Dobrovol’skii, N.N., Dobrovol’skii, N.M. 2023, “On the estimation of the error of quadrature formulas with optimal parallelepipedal grids II”, Chebyshevskii sbornik, vol. 24, no. 4, pp. 345–353.
15. Ter-Gukasova, N.K., Dobrovol’skii, M.N., Dobrovol’skii, N.N. Dobrovol’skii, N.M. 2022, “On the number of lattice points of linear comparison solutions in rectangular areas”, Chebyshevskii sbornik, vol. 23, no. 5, pp. 130–144.
16. Ter-Gukasova, N.K., Dobrovol’skii, M.N., Dobrovol’skii, N.N., Dobrovol’skii, N.M. 2023, “On the number of lattice points of linear comparison solutions in rectangular areas II”, Chebyshevskii sbornik, vol. 24, no. 4, pp. 9–22.
17. Chandrasekharan, K. 1974, “Introduction to Analytical Number Theory”, M.: Publishing House MIR.
Review
For citations:
Dobrovo’lskii N.N., Dobrovol’skii N.M., Basalov Yu.A., Rebrova I.Yu. Error of approximate integration and interpolation on classes of functions defined by monoids of natural numbers. Chebyshevskii Sbornik. 2024;25(4):74-105. (In Russ.) https://doi.org/10.22405/2226-8383-2024-25-4-74-105