Preview

Chebyshevskii Sbornik

Advanced search

ON COATOMS AND COMPLEMENTS IN CONGRUENCE LATTICES OF UNARS WITH MAL’TSEV OPERATION

https://doi.org/10.22405/2226-8383-2015-16-4-212-226

Abstract

One important problem is studying of lattices that naturally associated with universal algebra. In this article is considered algebras ⟨A, p, f⟩ with one Mal’tsev operation p and one unary operation f acting as endomorphism with respect to operation p. We study properties of congruence lattices of algebras ⟨A, p, f⟩ with Mal’tsev operation p that introduced by V. K. Kartashov. This algebra is defined as follows. Let ⟨A, f⟩ be an arbitrary unar and x, y ∈ A. For any element x of the unar ⟨A, f⟩ by f n (x) we denote the result of f applied n times to an element x. Also f 0 (x) = x. Assume that Mx,y = {n ∈ N ∪ {0} | f n (x) = f n (y)} and also k(x, y) = min Mx,y, if Mx,y ̸= ∅ and k(x, y) = ∞, if Mx,y = ∅. Assume further p(x, y, z) def = { z, if k(x, y) 6 k(y, z) x, if k(x, y) > k(y, z). It is described a structure of coatoms in congruence lattices of algebras ⟨A, p, f⟩ from this class. It is proved congruence lattices of algebras ⟨A, p, f⟩ has no coatoms if and only if the unar ⟨A, f⟩ is connected, contains one-element subunar and has infinite depth. In other cases congruence lattices of algebras ⟨A, p, f⟩ has uniquely coatom. It is showed for any congruences θ ̸= A × A and φ ̸= A × A of algebra ⟨A, p, f⟩ fulfills θ ∨ φ < A × A. Necessary and sufficient conditions when a congruence lattice of algebras from given class is complemented, uniquely complemented, relatively complemented, Boolean, generalized Boolean, geometric are obtained. It is showed any non-trivial congruence of algebra ⟨A, p, f⟩ from this class has no complement. It is proved that congruence lattices of any algebra ⟨A, p, f⟩ from given class is dual pseudocomplemented lattice.

 

About the Author

A. N. Lata
Волгоградский государственный социально-педагогический университет.
Russian Federation


References

1. Kartashov, V. K. 1999, "On unars with Mal’tsev operation" , Universal’naya algebra i ee prilozheniya: Tezisy soobshheniy uchastnikov mezhdunarodnogo seminara, posvyashhennogo pamyati prof. Moskovskogo Gos. Univ. L. A. Skornyakova, Peremena, Volgograd, pp. 31–32. (Russian)

2. Kurosh, A. G. 1974, "Obshchaya algebra. Lekcii 1969-1970 uchebnogo goda" [General Algebra. Lectures 1969-1970 Academic Year], Nauka, Moscow, 160 pp. (Russian)

3. Johnsson, B. 1993, "A survey of Boolean algebras with operators" , Algebras and Orders, NATO ASI Series, vol. 389, pp. 239–286. doi: 10.1007/978-94-017-0697- 1_6

4. Hyndman, J., Nation, J. B. & Nishida, J. 2015, "Congruence lattices of semilattices with operators" , preprint. Available at: www.math.hawaii.edu/ ∼jb/conslo_submit.pdf (accessed June 2015)

5. Bonsangue, M. M., Kurz, A. & Rewitzky, I. M. 2007, "Coalgebraic Representations of Distributive Lattices with Operators" , Topology and its Applications, vol. 154, issue 4, pp. 778-791. doi: 10.1016/j.topol.2005.10.010

6. Adaricheva, K. V. & Nation, J. B. 2012, "Lattices of quasi-equational theories as congruence lattices of semilattices with operators" , International Journal of Algebra and Computation, vol. 22, issue 07, part I: 27 pp. doi: 10.1142/S0218196712500658; part II: 16 pp. doi: 10.1142/S021819671250066X

7. Nurakunov, A. M. 2008, "Equational theories as congruences of enriched monoids" , Algebra Universalis, vol. 58, no. 3, pp. 357–372. doi: 10.1007/s00012- 008-2080-2

8. Berman, J. 1972, "On the congruence lattices of unary algebras" , Proceedings of the American Mathematical Society, vol. 36, no. 1, pp. 34–38. doi: 10.2307/ 2039033

9. Egorova, D. P. & Skornyakov, L. A. 1977, "On the congruence lattice of unary algebra" , Uporyadochennye Mnozhestva i Reshetki: Mezhvuzovskiy Nauchnyy Sbornik, Izdatel’stvo Saratovskogo universiteta, Saratov, issue 4, pp. 28–40. (Russian)

10. Boshhenko, A. P. 1989, "Pseudocomplements in congruence lattices of unars" , Algebraicheskie Sistemy: Mezhvuzovskiy Sbornik Nauchnyh Rabot, Izdatel’stvo VGPI imeni A.S. Serafimovicha, Volgograd, pp. 23–26. (Russian)

11. Boshhenko, A. P. 2000, "On dual pseudocomplements in congruence lattices of unars" , Universal’naya algebra i ee prilozheniya: Trudy Uchastnikov Mezhdunarodnogo Seminara, posvyashhennogo pamyati prof. Moskovskogo Gos. Univ. L. A. Skornyakova, Peremena, Volgograd, pp. 39–44. (Russian)

12. Pixley, A. F. 1963, "Distributivity and permutability of congruence relations in equational classes of algebras" , Proceedings of the American Mathematical Society, vol. 14, no. 1, pp. 105–109. doi: 10.1090/S0002-9939-1963-0146104-X

13. Usol’tsev, V. L. 2008, "Simple and pseudosimple algebras with operators" , Fundamental’naya i prikladnaya matematika vol. 14, no. 7, pp. 189–207 (Russian); translation in Journal of Mathematical Sciences, 2010, vol. 164, no. 2, pp. 281- 293. doi: 10.1007/S1095800997306

14. Usol’tsev, V. L. 2005, "On subdirect irreducible unars with Mal’tsev operation" , Izvestiya VGPU. Seriya estestvennye i fiziko-matematicheskie nauki, Volgograd, no. 4(13), pp. 17-24. (Russian)

15. Usol’tsev, V. L. 2014, "Structure of atoms in congruence lattices of algebras from one class of unars with Mal’tsev operation" , Sovremennye problemy gumanitarnyh i estestvennyh nauk: Materialy XVIII Mezhdunarodnoy nauchnoprakticheskoy konferencii 26-27 marta 2014 g., Spetskniga, Moscow, pp. 39–44. (Russian)

16. Usol’tsev, V. L. 2013, "On strictly simple ternary algebras with operators" , Chebyshevskiy sbornik, vol. 14, no. 4, pp. 196–204. (Russian)

17. Lata, A. N. 2012, "Uniform unars with standard Mal’tsev operation" , Vestnik Studencheskogo Nauchnogo Obshhestva, Peremena, Volgograd, issue 28, pp. 227– 231. (Russian)

18. Lata, A. N. 2013, "Regular unars with standard Mal’tsev operation" , Vestnik Studencheskogo Nauchnogo Obshhestva, Peremena, Volgograd, issue 29, pp. 317– 321. (Russian)

19. Lata, A. N. 2013, "Weakly regular unars with standard Mal’tsev operation" , Chebyshevskiy sbornik, vol. 14, no. 4, pp. 146–153. (Russian)

20. Salii, V. N. 1988, “Lattices with unique complements”, Translations of the American Mathematical Society, American Mathematical Society, Providence, R.I.

21. Gr¨atzer, G. 1978, "General Lattice Theory" , Akademie-Verlag, Berlin.

22. Artamonov, V. A., Salii, V. N., Skornyakov, L. A., Shevrin, L. N. & Shul’geifer, E. G. 1991, "Obshchaya algebra. Tom 2"[General algebra. Vol. 2], in Skornyakov, L. A. (ed.), Nauka, Moscow, 480 pp. (Russian)

23. Smirnov, D. M. 1992, "Mnogoobraziya algebr"[Varieties of algebras], VO "Nauka" , Sibirskaya izdatel’skaya firma, Novosibirsk, 205 pp. (Russian)

24. Wenzel, G. H. 1970, "Subdirect irreducibility and equational compactness in unary algebras ⟨A; f⟩" , Archiv der Mathematik, Basel, vol. 21, pp. 256–264. doi: 10.1007/BF01220912


Review

For citations:


Lata A.N. ON COATOMS AND COMPLEMENTS IN CONGRUENCE LATTICES OF UNARS WITH MAL’TSEV OPERATION. Chebyshevskii Sbornik. 2015;16(4):212-226. (In Russ.) https://doi.org/10.22405/2226-8383-2015-16-4-212-226

Views: 505


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)