Preview

Chebyshevskii Sbornik

Advanced search

A measure of the transcendence of the Liouville number in the 𝑝-adic domain

https://doi.org/10.22405/2226-8383-2024-25-3-359-364

Abstract

The paper presents a lover estimate for the 𝑝-adic value of a polynomial evaluated at polyadic Liouville number.

About the Author

Evgeny Stanislavovich Krupitsyn
Institute of Mathematics and Computer Science of MSPU
Russian Federation

candidate of physical and mathematical sciences



References

1. Chirskii, V. G. 2023, “Transcendence of 𝑝-adic measurements of generally accepted hypergeometric series with transcendental polyadic parameters”, Reports of the Russian Academy of Sciences. Mathematics, computer science, management processes., vol. 510, pp. 29–32.

2. Chirskii, V. G. 2022, “Arithmetic properties of values at polyadic liouville points of euler-type series with polyadic liouville parameter”, Doklady Mathematics, Vol. 106, № . 2, pp. 150–153.

3. Chirskii, V. G. 2022, “Arithmetic properties of the values of generalized hypergeometric series with polyadic transcendental parameters”, Doklady Mathematics., Vol. 106, № . 2, pp. 386—397.

4. Chirskii, V. G. 2022, “Infinite linear independence with constraints on a subset of prime numbers for values of euler-type series with polyadic liouville parameter”, Doklady Mathematics., Vol. 106, № . 2, pp. 154–160.

5. Chirskii, V. G. 2022, “New problems in the theory of transcendental polyadic numbers”, Doklady Mathematics., Vol. 106, № . 1, pp. 265-–267.

6. Chirskii, V. G. 2022, “On polyadic liouville numbers”, Doklady Mathematics. — 2022. — Vol. 106, no. S2. — pp. 161—164.

7. Chirskii, V. G. 2022, “Polyadic liouville numbers”, Doklady Mathematics. — 2022. — Vol. 106, no. S2. — pp. 137–141.

8. Chirskii, V. G. 2021, “Arithmetic properties of an euler-type series with polyadic liouville

9. parameter”, Russian Journal of Mathematical Physics., Vol. 28, № . 3, pp. 293—302.

10. Chirskii, V. G. 2020, “Arithmetic properties of euler-type series with a liouvillean polyadic

11. parameter”, Doklady Mathematics., Vol. 102, № . 2, pp. 68-–70.

12. Chirskii, V. G. 2020, “Arithmetic properties of generalized hypergeometric series”, Russian Journal of Mathematical Physics., Vol. 27, № . 2, pp. 175—184.

13. Chirskii, V. G. 2019, “Product formula, global relations and polyadic integers”, Russian Journal of Mathematical Physics., Vol. 26, № . 3, pp. 286—305.

14. Krupitsyn, E. S. 2017, “Estimation of a polynomial in a globally transcendental number”,

15. Chebyshevskii sbornik, vol. 18, № . 4, pp. 245-–254.

16. Krupitsyn, E. S. 2019, “Arithmetic properties of series of some classes”, Chebyshevskii sbornik, vol. 20, № 2, pp. 374–382.

17. Kurosh, A.G. 1968, “Course of higher algebra”, Moscow.: Science.


Review

For citations:


Krupitsyn E.S. A measure of the transcendence of the Liouville number in the 𝑝-adic domain. Chebyshevskii Sbornik. 2024;25(3):359-364. (In Russ.) https://doi.org/10.22405/2226-8383-2024-25-3-359-364

Views: 61


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)