Preview

Chebyshevskii Sbornik

Advanced search

A certain formula of Liouville

https://doi.org/10.22405/2226-8383-2024-25-3-335-342

Abstract

The classical Liouville formula expressing the multiple integral over a multidimensional
pyramid through the integral over a segment is discussed. It is shown how the Liouville formula
is related to the special sum, containing successive antiderivatives of the integrand. Specific examples are given to illustrate the general result. Along the way, a compact formula for calculating the power moments of an exponential function is proved.

About the Authors

Yulia Vladimirovna Andrianova
Lomonosov Moscow State University
Russian Federation


Vladimir Borisovich Sherstyukov
Lomonosov Moscow State University; Moscow Center of Fundamental and Applied Mathematics
Russian Federation

doctor of physical and mathematical sciences



References

1. Vinogradova, I. A., Olekhnik, S.N., Sadovnichii, V. A. 2018, “Mathematical analysis in tasks

2. and exercises”, MCСME, Moscow, 256 pp.

3. Fikhtengol’ts, G. M. 1966, “A Course of Differential and Integral Calculus”, Nauka, Moscow,

4. Vol. 3, 656 pp.

5. Gel’fond, A. O. 2006, “Residues and Their Applications”, KomKniga, Moscow, 112 pp.

6. Prudnikov, A.P., Brychkov, Yu. A., Marichev, O. I. 1981, “Integrals and Series. Elementary

7. functions”, Nauka, Moscow, 800 pp.

8. Graham, R. L., Knuth, D. E., Patashnik, O. 1994, “Concrete mathematics: A Foundation for

9. Computer Science”, 2nd edition. Addison-Wesley, MA, xiv+657 pp.

10. Hassani, M. 2003, “Derangements and applications”, Journal of Integer Sequences, vol. 6. Article 03.1.2.


Review

For citations:


Andrianova Yu.V., Sherstyukov V.B. A certain formula of Liouville. Chebyshevskii Sbornik. 2024;25(3):335-342. (In Russ.) https://doi.org/10.22405/2226-8383-2024-25-3-335-342

Views: 92


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)