Tensor invariants of fifth-order dynamical systems with dissipation
https://doi.org/10.22405/2226-8383-2024-25-3-270-298
Abstract
New cases of integrable dynamical systems of the fifth-order homogeneous in terms of variables are presented, in which a system on a tangent bundle to a two-dimensional manifold can be distinguished. In this case, the force field is divided into an internal (conservative) and an external one, which has a dissipation of different signs. The external field is introduced using some unimodular transformation and generalizes the previously considered fields. Complete sets of both the first integrals and invariant differential forms are given.
About the Author
Maxim Vladimirovich ShamolinRussian Federation
doctor of physical and mathematical sciences
References
1. Bourbaki N. Integrirovaniye. Mery, integrirovaniye mer [Integration. Measures, measure integration]. Moscow, Nauka, 1967.
2. Bourbaki N. Integrirovaniye. Mery na lokal’no-kompaktnykh prostranstvakh. Prodolzheniye mer. Mery na otdelimykh prostranstvakh [Integration. Measures on locally compact spaces. Continuation of measures. Measures on separable spaces]. Moscow, Nauka, 1977.
3. Weil G. Simmetriya [Symmetries]. Moscow, URSS, 2007.
4. Georgievskii D.V., Shamolin M.V. Kinematika i geometriya mass tverdogo tela s nepodvizhnoy tochkoy v R𝑛 [Kinematics and mass geometry for a solid body with a fixed point in R𝑛]. Doklady RAN [Physics Doklady], 2001, Vol. 380, No. 1, P. 47–50.
5. Georgievskii D.V., Shamolin M.V. Obobshchennye dinamicheskiye uravneniya Eilera dlya tverdogo tela s nepodvizhnoy tochkoy v R𝑛 [Generalized Euler’s Equations Describing the Motion of a Rigid Body with a Fixed Point in R𝑛]. Doklady RAN [Physics Doklady], 2002, Vol. 383, No. 5, P. 635–637.
6. Georgievskii D.V., Shamolin M.V. Pervye integraly uravneniy dvizheniya obobshchennogo gyroskopa v R𝑛 [First integrals of motion equations of a generalized gyroscope in R𝑛]. Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika [Moscow University Mathematics Bulletin], 2003, No. 5, P. 37–41.
7. Dubrovin B.A., Novikov S.P., Fomenko A.T. Sovremennaya geometriya [Modern Geometry], Moscow, Nauka, 1979.
8. Ivanova T.A. Ob uravneniyakh Eilera v modelyakh teoreticheskoy phiziki [Euler equations in models of theoretical physics]. Matematicheskiye zametki [Mathematical Notes], 1992, Vol. 52, No. 2, P. 43–51.
9. Kamke E. Spravochnik po obyknovennym differentsyal’nym uravneniyam [Handbook of Ordinary Differential Equations]. Moscow, Nauka, 1976.
10. Klein F. Neevklidova geometriya [Non-Euclidean geometry]. M., URSS, 2017.
11. Kozlov V.V. Integriruemost’ i Neintegriruemost’ v gamil’tonovoy mekhanike [Integrability
12. and non-integrability in Hamiltonian mechanics]. Uspekhi matematicheskikh nauk [Russian
13. Mathematical Surveys], 1983, Vol. 38, No. 1, P. 3–67.
14. Kozlov V.V. Ratsyonal’nye integraly kvaziodnorodnykh dinamicheskikh sistem [Rational
15. integrals of quasi-homogeneous dynamical systems] // Prikladnaya matematika i mekhanika [Journal of applied mathematics and mechanics], 2015, Vol. 79, No. 3, P. 307–316.
16. Kozlov V.V. Tenzornye invarianty i integrirovaniye differentsyal’nykh uravneniy [Tensor
17. invariants and integration of differential equations]. Uspekhi matematicheskikh nauk [Russian Mathematical Surveys], 2019, Vol. 74, No. 1(445), P. 117–148.
18. Kolmogorov A.N. O dinamicheskikh sistemakh s integral’nym invariantom na tore [On
19. dynamical systems with an integral invariant on a torus]. Doklady AN SSSR [Doklady
20. Mathematics], 1953, Vol. 93, No. 5, P. 763–766.
21. Pokhodnya N.V., Shamolin M.V. Noviy sluchay integriruemosti v dinamike mnogomernogo tela [A new case of integrability in the dynamics of a multidimensional body]. Vestnik Samarskogo universiteta. Estestvennonauchnaya seriya [Vestnik of Samara University. Natural Science Series], 2012, No. 9(100), P. 136–150.
22. Pokhodnya N.V., Shamolin M.V. Nekotorye usloviya integriruemosti dinamicheskikh sistem v transtsendentnykh funktsiyakh [Some conditions of integrability of dynamical systems in transcendental functions]. Vestnik Samarskogo universiteta. Estestvennonauchnaya seriya [Vestnik of Samara University. Natural Science Series], 2013, No. 9/1(110), P. 35–41.
23. Pokhodnya N.V., Shamolin M.V. Integriruemye sistemy na kasatel’nom rassloenii k mnogomernoy sfere [Integrable systems on a tangent bundle to a multidimensional sphere]. Vestnik Samarskogo universiteta. Estestvennonauchnaya seriya [Vestnik of Samara University. Natural Science Series], 2014, No. 7(118), P. 60–69.
24. Samsonov V.A., Shamolin M.V. K zadache o dvizhenii tela v soprotivlyayushcheisya srede [On the problem of a body motion in a resisting medium]. Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika [Moscow University Mechanics Bulletin], 1989, No. 3, P. 51– 54.
25. Trofimov V.V. Уравнения Эйлера на конечномерных разрешимых группах Ли [Euler equations on finite-dimensional solvable Lie groups]. Izvestiya AN SSSR. Seriya matematicheskaya [Izvestiya: Mathematics], 1980, Vol. 44, No. 5, P. 1191–1199.
26. Trofimov V.V. Simplekticheskiye struktury na gruppakh avtomorfizmov simmetricheskikh prostranstv [Symplectic structures on automorphism groups of symmetric spaces]. Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika [Moscow University Mathematics Bulletin], 1984, No. 6, P. 31–33.
27. Trofimov V.V., Fomenko A.T. Metodika postroeniya gamil’tonovykh potokov na simmetricheskikh prostranstvakh i integriruemost’ nekotorykh gidrodinamicheskikh sistem [The technique of Hamiltonian flows constructing on symmetric spaces and the integrability of some hydrodynamic systems]. Doklady AN SSSR [Doklady Mathematics], 1980, Vol. 254, No. 6, P. 1349–1353.
28. Trofimov V.V., Shamolin M.V. Geometricheskiye i dinamicheskiye invarianty integriruemykh gamil’tonovykh i dissipativnykh sistem [Geometric and dynamical invariants of integrable Hamiltonian and dissipative systems]. Fundamental’naya i prikladnaya matematika [Journal of Mathematical Sciences], 2010, Vol. 16, No. 4, P. 3–229.
29. Shabat B.V. Vvedeniye v kompleksniy analiz [Introduction in Complex Analysis], Moscow, Nauka, 1987.
30. Shamolin M.V. Ob integriruemosti v transtsendentnykh funktsiyakh [On integrability in
31. transcendental functions]. Uspekhi matematicheskikh nauk [Russian mathematical surveys], 1998, Vol. 53, No. 3, P. 209–210.
32. Shamolin M.V. Integriruemost’ po Yakobi v zadache o dvizhenii chetyrekhmernogo tverdogo tela v soprotivlyayushcheisya srede [Integrability according to Jacobi in the Problem of Motion of a Four-Dimensional Solid in a Resistant Medium]. Doklady RAN [Physics Doklady], 2000, Vol. 375, No. 3, P. 343–346.
33. Shamolin M.V. Ob integrirovanii nekotorykh klassov nekonservativnykh sistem [Integration of certain classes of non-conservative systems]. Uspekhi matematicheskikh nauk [Russian mathematical surveys], 2002, Vol. 57, No. 1, P. 169–170.
34. Shamolin M.V. Ob odnom integriruemom sluchae uravneniy dinamiki na so(4) × R4 [An
35. integrable case of dynamical equations on so(4)×R4]. Uspekhi matematicheskikh nauk [Russian mathematical surveys], 2005, Vol. 60, No. 6, P. 233–234.
36. Shamolin M.V. Sluchay polnoy integriruemosti v dinamike na kasatel’nom rassloenii dvumernoy sfery [The case of complete integrability in dynamics on a tangent bundle of a two-dimensional sphere]. Uspekhi matematicheskikh nauk [Russian mathematical surveys], 2007, Vol. 62, No. 5, P. 169–170.
37. Shamolin M.V. Noviy sluchay integriruemosti v dinamike mnogomernogo tverdogo tela v nekonservativnom pole [New Case of Integrability in the Dynamics of a Multidimensional Solid in a Nonconservative Field]. Doklady RAN [Physics Doklady], 2013, Vol. 453, No. 1, P. 46–49. 30. Shamolin M.V. Noviy sluchay integriruemosti uravenniy dinamiki na kasatel’nom rassloenii k trekhmernoy sfere [New case of integrability of dynamic equations on the tangent bundle of a 3-sphere]. Uspekhi matematicheskikh nauk [Russian mathematical surveys], 2013, Vol. 68, No. 5(413), P. 185–186.
38. Shamolin M.V. Noviy sluchay integriruemosti v dinamike mnogomernogo tverdogo tela v nekonservativnom pole pri uchete lineynogo dempfirovaniya [A New Case of Integrability in the Dynamics of a Multidimensional Solid in a Nonconservative Field under the Assumption of Linear Damping]. Doklady RAN [Physics Doklady], 2014, Vol. 457, No. 5, P. 542–545.
39. Shamolin M.V. Integriruemye sistemy s peremennoy dissipatsiey na kasatel’nom rassloenii k mnogomernoy sfere i prilozheniya [Integrable variable dissipation systems on the tangent bundle of a multi-dimensional sphere and some applications]. Fundamental’naya i prikladnaya matematika [Journal of Mathematical Sciences], 2015, Vol. 20, No. 4, P. 3–231.
40. Shamolin M.V. Polniy spisok pervykh integralov dinamicheskikh uravneniy dvizheniya mnogomernogo tverdogo tela v nekonservativnom pole [Complete List of First Integrals of Dynamic Equations for a Multidimensional Solid in a Nonconservative Field]. Doklady RAN [Physics Doklady], 2015, Vol. 461, No. 5, P. 533–536.
41. Shamolin M.V. Polniy spisok pervykh integralov dinamicheskikh uravneniy dvizheniya mnogomernogo tverdogo tela v nekonservativnom pole pri nalichii lineynogo dempfirovaniya [Complete List of the First Integrals of Dynamic Equations of a Multidimensional Solid in a Nonconservative Field under the Assumption of Linear Damping]. Doklady RAN [Physics Doklady], 2015. — Т. 464. — № 6. — С. 688–692.
42. Shamolin M.V. Integriruemiye nekonservativniye dinamicheskiye sistemy na kasatel’nom rassloenii k mnogomernoy sfere [Integrable Nonconservative Dynamical Systems on the Tangent Bundle of the Multidimensional Sphere]. Differentsial’niye uravneniya [Differential equations]. 2016, Vol. 52, No. 6, P. 743–759.
43. Shamolin M.V. Noviye sluchai integriruemykh sistem s dissipatsiyey na kasatel’nom rassloenii k mnogomernoy sfere [New Cases of Integrable Systems with Dissipation on a Tangent Bundle of a Multidimensional Sphere]. Doklady RAN [Physics Doklady], 2017, Vol. 474, No. 2, P. 177–181.
44. Shamolin M.V. Integriruemiye dinamicheskie sistemy s konechnym chislom stepeney svobody s dissipatsiyey [Integrable Dynamic Systems with Dissipation and Finitely Many Degrees of Freedom]. Problemy matematicheskogo analiza [Journal of mathematical sciences], 2018, No. 95, P. 79–101.
45. Shamolin M.V. Noviye sluchai integriruemykh sistem s dissipatsiyey na kasatel’nom rassloyenii mnogomernogo mnogoobraziya [New Cases of Integrable Systems with Dissipation on the Tangent Bundle of a Multidimensional Manifold]. Doklady RAN [Physics Doklady], 2018, Vol. 482, No. 5, P. 527–533.
46. Shamolin M.V. Noviye sluchai integriruemykh sistem s dissipatsiyey na kasatel’nom rassloyenii chetyrekhmernogo mnogoobraziya [New Cases of Integrable Systems with Dissipation on Tangent Bundles of Four-Dimensional Manifolds]. Doklady RAN [Physics Doklady], 2018, Vol. 479, No. 3, P. 270–276.
47. Shamolin M.V. Noviye sluchai integriruemykh sistem nechetnogo poryadka s dissipatsiyey [New Cases of Integrable Odd-Order Systems with Dissipation]. Doklady RAN. Matematika, informatika, protsessy upravleniya [Doklady Mathematics], 2020, Vol. 491, No. 1, P. 95–101.
48. Shamolin M.V. Noviye sluchai odnorodnykh integriruemykh sistem s dissipatsiyey na kasatel’nom rassloyenii chetyrekhmernogo mnogoobraziya [New Cases of Homogeneous Integrable Systems with Dissipation on Tangent Bundles of Four-Dimensional Manifolds]. Doklady RAN. Matematika, informatika, protsessy upravleniya [Doklady Mathematics], 2021, Vol. 497, No. 1, P. 23–30.
49. Shamolin M.V. Noviye sluchai integriruemosti geodezicheskikh, potentsial’nykh i dissipativnykh sistem na kasatel’nom rassloenii konechnomernogo mnogoobraziya [New Cases of Integrability of Systems of Geodesics and Potential and Dissipative Systems on Tangent Bundles of Finite-Dimensional Manifolds]. Doklady RAN. Matematika, informatika, protsessy upravleniya [Doklady Mathematics], 2021, Vol. 500, No. 1, P. 78–86.
50. Shamolin M.V. Tenzorniye invarianty geodezicheskikh, potentsial’nykh i dissipativnykh sistem na kasatel’nom rassloenii dvumernogo mnogoobraziya [Tensor Invariants of Geodesic, Potential, and Dissipative Systems on Tangent Bundles of Two-Dimensional Manifolds]. Doklady RAN. Matematika, informatika, protsessy upravleniya [Doklady Mathematics], 2021, Vol. 501, No. 1, P. 89–94.
51. Shamolin M.V. Invariantniye formy obyema sistem s tremya stepenyami svobody s peremennoy dissipatsiyey [Invariant Volume Forms of Variable Dissipation Systems with Three Degrees of Freedom]. Doklady RAN. Matematika, informatika, protsessy upravleniya [Doklady Mathematics], 2022, Vol. 507, No. 1, P. 86–92.
52. Poincar´e H. Calcul des probabilit´es, Gauthier–Villars, Paris, 1912.
53. Shamolin M.V. Some questions of the qualitative theory of ordinary differential equations and dynamics of a rigid body interacting with a medium. Journal of Mathematical Sciences, 2002,Vol. 110, No. 2, P. 2528–2557.
Review
For citations:
Shamolin M.V. Tensor invariants of fifth-order dynamical systems with dissipation. Chebyshevskii Sbornik. 2024;25(3):270-298. (In Russ.) https://doi.org/10.22405/2226-8383-2024-25-3-270-298