Quaternion algebras with unitary involutions having the same subfields
https://doi.org/10.22405/2226-8383-2024-25-3-226-235
Abstract
We construct a field 𝐸 such that there are infinitely many non-isomorphic quaternion 𝐸-algebras with unitary involution and all such algebras are split by any quadratic field extension of 𝐸.
About the Author
Sergey Viktorovich TikhonovBelarus
candidate of physical and mathematical sciences
References
1. Chernousov, V. I., Rapinchuk, A. S. & Rapinchuk, I. A. 2015, “Division algebras with the same maximal subfields”, Russian Math. Surveys, vol. 70, issue 1, pp. 83-112.
2. Tikhonov, S. V. 2016, “Division algebras of prime degree with infinite genus”, Proc. Steklov Inst. Math., vol. 292, pp. 264-267.
3. Amitsur, S. A. 1955, “Generic splitting fields of central simple algebras”, Ann. of Math. (2), vol. 62, no. 1, pp. 8-43.
4. Beli, C., Gille, P. & Lee, T.-Y. 2016, “Examples of algebraic groups of type 𝐺2 having the same maximal tori”, Proc. Steklov Inst. Math., vol. 292, pp. 10-19.
5. Chernousov, V. I., Rapinchuk, A. S. & Rapinchuk, I. A. 2012, “On the genus of a division
6. algebra”, C. R. Acad. Sci. Paris Ser. I., vol. 350, no. 17-18, pp. 807-812.
7. Chernousov, V. I., Rapinchuk, A. S. & Rapinchuk, I. A. 2013, “The genus of a division algebra and the unramified Brauer group”, Bull. Math. Sci., vol. 3, no. 2, pp. 211-240.
8. Chernousov, V. I., Rapinchuk, A. S. & Rapinchuk, I. A. 2016, “On the size of the genus of a
9. division algebra”, Proc. Steklov Inst. of Math., vol. 292, no. 1, pp. 63-93.
10. Chernousov V. I., Rapinchuk A. S., Rapinchuk I. A. 2016, “On some finiteness properties of algebraic groups over finitely generated fields”, C. R. Acad. Sci. Paris, Ser. I., vol. 354, pp.
11. -873.
12. Chernousov, V. I., Rapinchuk, A. S. & Rapinchuk, I. A. 2019, “Spinor groups with good
13. reduction”, Compos. Math., vol. 155, no. 3, pp. 484-527.
14. Chernousov, V. I., Rapinchuk, A. S. & Rapinchuk, I. A. 2020, “The finiteness of the genus of a finite-dimensional division algebra, and generalizations”, Israel J. Math., vol. 236, no. 2, pp. 747-799.
15. Chernousov, V. I., Rapinchuk, A. S. & Rapinchuk, I. A. 2024, “Simple algebraic groups with the same maximal tori, weakly commensurable Zariski-dense subgroups, and good reduction”, Adv. Math., vol. 438, paper no. 109437.
16. Garibaldi, S. & Saltman, D. 2010, “Quaternion Algebras with the Same Subfields”, Quadratic forms, linear algebraic groups, and cohomology. Dev. math. 18, Springer, New York, pp. 225-238
17. Knus, M.-A., Merkurjev, A. S., Rost, M. & Tignol, J.-P. 1998, “The Book of Involutions”,
18. Colloquium Publications. vol. 44, Amer. Math. Soc., +593 pp.
19. Krashen, D. & McKinnie, K. 2011, “Distinguishing algebras by their finite splitting fields”,
20. Manuscripta Math., vol. 134, no. 1-2, pp. 171-182.
21. Krashen, D., Matzri, E., Rapinchuk, A., Rowen, L. & Saltman, D. 2022, “Division algebras with common subfields”, Manuscripta Math., vol. 169, no. 1-2, pp. 209-249.
22. Meyer, J. S. 2014, “Division algebras with infinite genus”, Bull. London Math. Soc., vol. 46, no. 3, pp. 463-468.
23. Prasad, G. & Rapinchuk, A. S., 2009, “Weakly commensurable arithmetic groups and isospectral locally symmetric spaces”, Publ. math. IHES., vol. 109, pp. 113-184.
24. Prasad, G. & Rapinchuk, A. S. 2010, “Local-global principles for embedding of fields with
25. involution into simple algebras with involution”, Comment. Math. Helv., vol. 85, pp. 583-645.
26. Rapinchuk, A. S. & Rapinchuk, I. A. 2010, “On division algebras having the same maximal subfields”, Manuscripta Math., vol. 132, no. 3-4, pp. 273-293.
27. Rapinchuk, A. S. & Rapinchuk, I. A. 2020, “Linear algebraic groups with good reduction”, Res. Math. Sci., vol. 7, no. 3, paper no. 28.
28. Rapinchuk, A. S. & Rapinchuk, I.A. 2021, “Recent developments in the theory of linear algebraic groups: Good reduction and finiteness properties”, Notices Amer. Math. Soc., vol. 68, no. 6, pp. 899-910.
29. Rapinchuk, A. S. & Rapinchuk, I. A. 2022, “Some finiteness results for algebraic groups and unramified cohomology over higherdimensional fields”, J. Number Theory., vol. 233, pp. 228-260.
30. Rapinchuk, A. S. & Rapinchuk, I. A. 2023, “Properness of the global-to-local map for algebraic groups with toric connected component and other finiteness properties”, Math. Res. Lett., vol. 30, no. 3, pp. 913–943.
31. Roquette, P. 1964, “Isomorphisms of generic splitting fields of simple algebras”, J. Reine Angew. Math., vol. 214/215, pp. 207-226.
32. Saltman, D. J. 1999, “Lectures on Division Algebras”, Providence, RI: Amer. Math. Soc., + 120 pp.
33. Tikhonov, S. V. 2021, “On genus of division algebras”, Manuscripta Math., vol. 164, no. 1, pp. 321-325.
34. Tikhonov, S. V. 2024, “Outer forms of type 𝐴2 with infinite genus”, Documenta Math., Vol.29, № 4, pp. 805–814.
Review
For citations:
Tikhonov S.V. Quaternion algebras with unitary involutions having the same subfields. Chebyshevskii Sbornik. 2024;25(3):226-235. (In Russ.) https://doi.org/10.22405/2226-8383-2024-25-3-226-235