Preview

Chebyshevskii Sbornik

Advanced search

Isospectral and partially isospectral Dirac operators on the finite interval

https://doi.org/10.22405/2226-8383-2024-25-3-201-212

Abstract

In this paper, we propose an algorithm for constructing isospectral and partially isospectral
Dirac operators on a finite interval. This algorithm is applied to the process of finding solutions to mixed problems posed for a system of partial differential equations of hyperbolic type with variable coefficients.

About the Authors

Olim Erkinovich Mirzaev
Samarkand State University named after Sharof Rashidov
Uzbekistan

candidate of physical and mathematical sciences



Temur Gafurdjanovich Khasanov
postgraduate student
Uzbekistan

Urgench State University



References

1. Arutjunjan, T. N. 1994, “Isospectral Dirac operators”, Proceedings of the National Academy of Sciences of Armenia. Mathematics, 29, № 2, pp. 4–14.

2. Albeverio, S, Hryniv, R., Mykytyuk, Ya. 2005, “Inverse spectral problems for Dirac operators with summable potentials”, Russian Journal of Math Physics, 12, pp. 406-423.

3. Etibar S. Panakhov, Tuba Gulsen. 2014, “Isospectrality problem for Dirac system”, National academy of sciences of Azerbaijan, Vol.40, Special issue, pp. 386–392.

4. Ashrafyan, Yu. A., Harutyunyan, T. N. 2016, “Dirac operator with linear potential and its

5. perturbations”, Mathematical Inverse Problems, Vol.3, No.1, pp. 12–25.

6. Ashrafyan, Y., Harutyunyan, T. 2017, “Isospectral Dirac operators”, Electronic Journal of

7. Qualitative Theory of Differential Equations, № 4, pp. 1–9.

8. Gasymov, M. G., Dzhabiev, T. T. 1975, “Determination of the system of Dirac differential

9. equations from two spectra”, Proceedings of the Summer School on the Spectral Theory of

10. Operators and the Representation of Group Theory - Baku: Elm, pp. 46–71.

11. Gasymov, M. G., Levitan, B. M. 1966, “Inverse problem for the Dirac system”, DAN USSR, v.167, № . 5. pp.967–970.

12. Poschel, J., Trubowitz, E. 1987, “Inverse spectral theory”, Academic Press, New York.

13. Jodeit, M., Levitan, B. M. 1997, “The isospectrality problem for the classical Sturm-Liouville equation”, Advances in differential equations, v.2, № 2, pp. 297–318.

14. Jodeit, M., Levitan, B. M. 1999, “The izospectrality problem for some vector boundary

15. problems”, Russian journal of mathematical physics, vol.6, No.4, pp. 375–393.

16. Ashrafyan, Y. A., Harutyunyan, T. N. 2015, “Inverse Sturm-Liouville problems with fixed

17. boundary conditions”, Electronic Journal of differential equations, v. 2015, № 27, pp. 1–8.

18. Khasanov, A. B. 1994, “Eigenvalues of the Dirac operator in the continuous spectrum”,

19. Theoretical and Mathematical Physics, 99(1), pp. 396–401. https://doi.org/10.1007/

20. BF01018793

21. Mirzaev, O. E. Khasanov, A. B. 2020, “On families of isospectral Sturm–Liouville boundary

22. value problems”, Ufa Mathematical Journal,12:2, pp. 28–34. https://doi.org/10.13108/2020-

23. -2-28

24. Mirzaev, O. E., Hasanov, A. B. 2020, “Isospectral Sturm-Liouville operators on the finite

25. interval”, DAN RUz., № 3, pp. 3–9.

26. Mirzaev, O. E., Murodov, F. M. 2020, “Isospectral Sturm-Liouville operators on the finite

27. interval”, SCIENTIFIC JOURNAL Samarkand State University, 3(121), pp. 50–55.

28. https://doi.org/10.59251/2181-1296.v3.1211.1083

29. Mirzaev, O. E. 2020, “Isospectral Sturm-Liouville operators on the finite interval”, SCIENTIFIC JOURNAL Samarkand State University, 5(123), pp. 60–64. https://doi.org/10.59251/2181-1296.v5.1231.1436

30. Mirzaev, O. E. 2023, “Partially-isospectral Sturm-Liouville operators on the finite interval”, Chebyshevskii Sbornik, Vol. 24, Iss. 1(87), pp. 104–113. https://doi.org/10.22405/2226-8383-2023-24-1-104-113

31. Mirzaev, O. E., Suvonova, M. 2022, “Partially-isospectral Sturm-Liouville operators on the finite interval”, Mathematical methods and models in high-tech production. II International Forum. November 9, 2022, pp. 23–27.

32. Ambarzumjan, W. A. 1929, “On a Problem of the Theory of Eigenvalues”, Zeitschr, f¨ur Physik. 53, pp. 690–695.

33. Alimov, Sh. A. 1976, “The work of A. N. Tikhonov on inverse problems for the Sturm-Liouville equation”, UMH. 31:6(192), pp. 84–88. [Russian Math. Surveys, 31:6, pp. 87–92].

34. Gelfand, I. M., Levitan, B. M. 1951, “On the determination of a differential equation from its spectral function”, Izv. Academy of Sciences of the USSR. Ser. math. 15 :4 , pp. 309–360.

35. Levitan, B. M., Sargsyan, I. S. 1988, “Sturm-Liouville and Dirac operators”, Nauka. Moscow, [Kluwer Acad. Publ. Dordrecht (1990).]

36. Marchenko, V. A. “Sturm-Liouville Operators and Applications”, Kiev “Naukova Dumka” 1977. [Birkh¨auser Verlag (1986).]

37. Savchuk, A. M., Shkalikov, A. A. 2008, “On the properties of maps connected with inverse Sturm-Liouville problems”, Trudy MIAN. 260, pp. 227–247 . [Proc. Steklov Inst. Math. 260 , pp. 218–237 (2008).] https://doi.org/10.1134/S0081543808010161

38. Yurko, V. A. 2007, “Introduction into the theory of inverse spectral problems”, M.: Fizmatlit, 284 p.


Review

For citations:


Mirzaev O.E., Khasanov T.G. Isospectral and partially isospectral Dirac operators on the finite interval. Chebyshevskii Sbornik. 2024;25(3):201-212. (In Russ.) https://doi.org/10.22405/2226-8383-2024-25-3-201-212

Views: 96


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)