Reduction of the mathematical model of some problems of mathematical economics to systems of differential equations that can be solved in quadratures
https://doi.org/10.22405/2226-8383-2024-25-3-187-200
Abstract
The article discusses the problems associated with the Ramsey — Kass — Koopmans mathematical model of economic growth. An auxiliary system of differential equations is being constructed, for which it is possible to obtain a solution in quadratures. Based on the obtained solution, the upper estimates of the consumption function are found. Using the upper estimates of the consumption function, we find the maximum value of the time interval in which there are solutions to the auxiliary system of differential equations for the considered parameter values.
Under a special initial condition, we show that there is a solution to the Cauchy problem (𝐾(𝑡), 𝐶(𝑡)) on the entire ray 𝑡 ∈ [0;+∞) and both components increase and tend to the values we found.
About the Authors
Artem Ivanovich KozkoRussian Federation
candidate of physical and mathematical sciences
Lyubov Mikhailovna Luzhina
Russian Federation
candidate of physical and mathematical sciences
Anton Yurievich Popov
Russian Federation
doctor of physical and mathematical sciences
Vladimir Grigorievich Chirskii
Russian Federation
doctor of physical and mathematical sciences
References
1. Acemoglu, Daron. 2009, “The Neoclassical Growth Model. Introduction to Modern Economic Growth”, Princeton: Princeton University Press. pp. 287–326. ISBN 978-0-691-13292-1.
2. B´enassy, Jean-Pascal. 2011, “The Ramsey Model. Macroeconomic Theory”, New York: Oxford University Press. pp. 145–160. ISBN 978-0-19-538771-1.
3. Kozko A.I., Luzhina L.M., Popov, A.Yu., Chirskii, V.G. 2022, “The method of approximate
4. solution of a system of differential equations from the Ramsey — Kass — Koopmans model, based on the solution in quadratures of one subclass of similar systems”, Chebyshevskii Sbornik. vol.23(4), September. pp. 115-125. (In Russ.) https://doi.org/10.22405/2226-8383-2022-23-4-115-125
5. Kozko, A.I., Luzhina, L.M., Popov, A.Yu., Chirskii, V.G. 2019, “Optimal exponent in the
6. Ramsey — Kass — Koopmans problem with logarithmic utility function”, Chebyshevskii Sbornik. vol. 20(4), September. pp. 197-207. (In Russ.) https://doi.org/10.22405/2226-8383-2018-20-4-197-207
7. Kozko, A. I., Luzhina, L. M., Popov, A. Yu., Chirskii, V. G. 2020, “On the Ramsey —
8. Kass — Koopmans problem for consumer choice”, Results of science and technology. Modern mathematics and its applications. Thematic review. vol. 182, September, pp. 39-44. (In Russ.) DOI: 10.36535/0233-6723-2020-182-39-44.
9. Kozko, A. I., Luzhina, L. M., Popov, A. Yu., Chirskii, V. G. 2019, The model of the problem Ramsey — Kass — Koopmans // Moscow state pedagogical University (Moscow). Classical and modern geometry, materials of the international conference dedicated to the 100th anniversary of V. T. Bazylev. under the editorship of A. V. Tsarev. Moscow. pp. 87-88.
10. Kozko, A.I., Luzhina, L.M., Popov, A.Yu., Chirskii, V.G. 2019, “Assessment of the necessary initial economic resource in the Ramsey — Kass — Koopmans problem”, Chebyshevskii Sbornik. vol. 20(4), September, pp. 188-196. (In Russ.) https://doi.org/10.22405/2226-8383-2018-20-4-188-196.
11. Kozko, A.I., Luzhina, L.M., Popov, A.Yu., Chirskii, V.G. 2022, “The consumption function
12. in the Ramsey — Kass — Koopmans economic growth model in the case of a stationary
13. saving function”, Chebyshevskii Sbornik. vol. 23(1), September, pp. 118-129. (In Russ.)
14. https://doi.org/10.22405/2226-8383-2018-20-4-188-196.
15. Kozko, A.I., Luzhina, L.M., Popov, A.Yu., Chirskii, V.G. 2021, “Localization of the indicator optimal exponent of the Ramsey — Kass — Koopmans problem tending to infinity of the power utility function”, Chebyshevskii Sbornik. 2021;22(2):121-134. (In Russ.) https://doi.org/10.22405/2226-8383-2021-22-2-121-134
16. Kozko, A.I., Luzhina, L.M., Popov, A.Yu., Chirskii, V.G. “Restrictions on the values of the consumption function in the Ramsey — Kass — Koopmans economic growth model in the case of a stationary saving function”, Chebyshevskii Sbornik. 2021;22(2):501-509. (In Russ.) https://doi.org/10.22405/2226-8383-2021-22-2-501-509
17. Kozko, A.I., Luzhina, L.M., Popov, A.Yu., Chirskii, V.G. 2023, “About the ideal economic situation - the growth of capital and the function of consumption in some models of economic growth”, Chebyshevskii Sbornik. vol. 24(2), pp. 256-265. (In Russ.) https://doi.org/10.22405/2226-8383-2023-24-2-256-265
18. Rahul, Giri. 2018, “Growth Model with Endogenous Savings: Ramsey — Cass — Koopmans Model”, http://ciep.itam.mx/˜rahul.giri/uploads/1/1/3/6/113608/
19. ramsey-cass-koopmans_model.pdf.
20. Barro, Robert J., Sala-i-Martin, Xavier. 2003, “Economic growth (2nd ed.)”, Massachusetts: MIT Press, ISBN 9780262025539.
21. Groth, Christian and Koch, Karl-Josef and Steger, Thomas Michael. 2006, “Rethinking the Concept of Long-Run Economic Growth (April 2006)”, CESifo Working Paper Series, no. 1701. Available at SSRN: https://ssrn.com/abstract=899250.
22. Groth, Christian and Koch, Karl-Josef and Steger, Thomas Michael. 2010, “When Economic Growth is Less than Exponential”, Economic Theory, vol. 44, no. 2, pp. 213-242.
23. Groth, C. 2010, “Chapter 10: The Ramsey Model”, Available at: http://web.econ.ku.dk/okocg/VV/VV-2010/Lecture%20notes/Ch7-2010-1.pdf.
24. Romer, D. 2006, “Advanced Macroeconomics. 3rd ed”, New York: McGraw-Hill/Irwin, pp. 651.
25. Robert J., Barro. 1999, “Ramsey Meets Laibson in the Neoclassical Growth Model”, The Quarterly Journal of Economics, Oxford University Press, vol. 114, no. 4, pp. 1125-1152.
26. King Robert, G., and Sergio Rebelo. 1993, “Transitional Dynamics and Economic Growth in the Neoclassical Model”, American Economic Review. vol. 83, September, pp. 908-931.
27. Pierre-Olivier, Gourinchas. 2014, “Notes for Econ202A: The Ramsey — Cass — Koopmans Model”, UC Berkeley Fall, https://eml.berkeley.edu/˜webfac/gourinchas/e202a_f14/Notes_Ramsey_Cass_Koopmans_pog.pdf.
28. Eglit, Y., Eglite, K., Dudin, V., Yurchenko, E. 2022, “Consumption function and estimation of its parameters from experimental data”, Transport business in Russia. vol. 2, pp. 7-9.
Review
For citations:
Kozko A.I., Luzhina L.M., Popov A.Yu., Chirskii V.G. Reduction of the mathematical model of some problems of mathematical economics to systems of differential equations that can be solved in quadratures. Chebyshevskii Sbornik. 2024;25(3):187-200. (In Russ.) https://doi.org/10.22405/2226-8383-2024-25-3-187-200