On strongly star ideal compactness of topological spaces
https://doi.org/10.22405/2226-8383-2024-25-3-37-46
Abstract
In this article we introduce the concept of strongly star I-compactness and study some of its topological features. We represent some finite intersection like properties for both I-compact spaces and strongly star I-compact spaces. Lastly we establish a relation between the countably 𝐼𝑓𝑖𝑛-compact space and the strongly star 𝐼𝑓𝑖𝑛-compact space. In order to identify the difference between the different versions of compactness we represent some counter examples. And some open problems are also posed in this article.
About the Authors
Prasenjit BalIndia
Ph.D. in Mathematics
Rakhal Das
India
Ph.D. in Mathematics
Susmita Sarkar
India
M.Sc. in Mathematics
References
1. Bal, P., Bhowmik, S. 2017, “Star-Selection Principle. Another New Direction”, Journal of the Indian Math. Soc., 81(1-2): 01-06.
2. Bal, P., Bhowmik, S. 2017, “On R-Star-Lindel¨of Spaces”, Palestine Journal of Mathematics, 6(2): 480-186.
3. Bal, P., Bhowmik, S. 2017, “Some New Star-Selection Principles in topology”, Filomat, 31(13): 4041-4050.
4. Bal, P., Bhowmik, S., Gauld D. 2018, “On Selectively Star-Lindel¨of Properties”, Journal of the Indian Math. Soc., 85(3-4): 291-304.
5. Bal, P., LDR Koˇcinac. 2020, “On Selectively Star-ccc Spaces”, Topology Appl., 281: 107181
6. Bal, P., De, R. 2023, “On strongly star semi-compactness of topological spaces”, Khayyam Journal of Mathematics, 9(1): 54–60.
7. Bal, P. “On the class of I-𝛾-open cover AND I-St-𝛾-open cover”, Hacettepe Journal of
8. Mathematics and Statistics(accepted).
9. Bonanzinga, M., Maesano, F. 2022, “Some properties defined by relative versions of star-covering properties”, Topology and its Applications, 306: 107923.
10. Douwen, E.K.V., Reed, G.M., Roscoe, A.W., Tree, I.J. 1991, “Star covering properties”, Topology Appl., 30(1): 71-103.
11. Devi, V.R., Sivraj, Chelvam, T.T. 2005, “Codense and completely codense ideals”, Acta. Math. Hungar., 108(3): 197-205.
12. Engelking, R. 1980, “General Topology”, Sigma Series in Pure Mathematics. Revised and complete ed Berlin: Heldermann, 1980.
13. Gupta, A., Kaur, R. 2014, “Compact spaces with respect to an ideal”, International Journal of Pure and Applied Mathematics, 92(3) : 443-8.
14. Jankovic, D., Hamlett, T.R. 1990, “New Topologies from old via ideals”, Amer. Math. Monthly, 97: 295-310.
15. Kocinac, L.D. 2015, “Star selection principles: A survey”, Khayyam Journal of Mathematics, 1(1); 82–106.
16. Kuratowski, K. 1933, “Topologie I”, Warszawa.
17. Levin, N. 1970, “Generalised closed sets in topology”, Rend, Circ. Mat. Palermo, 19: 89-96.
18. Newcomb, R.L. Topologies which are compact modulo an ideal. Ph.D. Thesis, Uni. Of Cal. At Santa Barbara, 1967.
19. Rancin, D. V. 1972, “Compactness modulo an ideal”, Soviet Math. Dokl., 13: 193-197.
20. Song, Y. K., Xuan, W. F. 2019, “More on selectively star-ccc spaces”, Topology and its
21. Applications, 268 : 106905.
22. Tyagia, B. K., Singh, S., Bhardwaj, M. 2019, “Ideal Analogues of Some Variants of the Hurewicz Property”, Filomat, 33(9): 2725–2734.
23. Vaidyanathaswamy, R. 1946, “Set Topology”, Chelsea Publishing Complex.
Review
For citations:
Bal P., Das R., Sarkar S. On strongly star ideal compactness of topological spaces. Chebyshevskii Sbornik. 2024;25(3):37-46. (In Russ.) https://doi.org/10.22405/2226-8383-2024-25-3-37-46