Preview

Chebyshevskii Sbornik

Advanced search

ESTIMATES OF SHORT CUBIC DOUBLE EXPONENTIAL SUMS WITH A LONG CONTINUOUS SUMMATION

https://doi.org/10.22405/2226-8383-2016-17-1-217-231

Abstract

I. M. Vinogradov pioneered the study of short exponential sums with primes. For k = 1 using his method of estimating sums with primes, he obtained a non-trivial estimate for sums of the form Sk(α; x, y) = X x−y<n6x Λ(n)e(αnk), α = a q + λ, |λ| 6 1 qτ , 1 6 q 6 τ when exp(c(ln ln x)2) ≪ q ≪ x1/3, y > x2/3+ε, This estimate is based on “Vinogradov sieve” and for k = 1 utilizes estimates of short double exponential sums of the form Jk(α; x, y,M,N) = X M<m62M a(m) X U<n62N x−y<mn6x b(n)e(α(mn)k), where a(m) and b(n) are arbitrary complex-valued functions, M, N are positive integers, N 6 U < 2N, x > x0, y are real numbers. Later, B. Haselgrove, V. Statulyavichus, Pan Cheng-Dong and Pan Cheng-Biao, Zhan Tao obtained a nontrivial estimate for the sum S1(α; x, y), y > xθ, where q was an arbitrary integer, and successfully proved an asymptotic formula for ternary Goldbach problem with almost equal summands satisfying |pi − N/3| 6 H, H = Nθ, respectively when θ = 63 64 + ε, 279 308 + ε, 2 3 + ε, 5 8  + ε. J. Liu and Zhan Tao studied the sum J2(α; x, y,M,N) and obtained a non-trivial estimate for the sum S2(α; x, y) when y > x 11 16+ε. This paper is devoted to obtaining non-trivial estimates for the sum J3(α; x, y,M,N), with a “long” continuous summation over minor arcs.

About the Authors

Z. Kh. Rakhmonov
Institute of Mathematics, Academy of Sciences of the Republic of Tajikistan
Russian Federation

doctor of physical andmathematical sciences, professor, corresponding member of Academy of Sciences of the Republic of Tajikistan, director of the Dzhuraev



F. Z. Rakhmonov
Institute of Mathematics, Academy of Sciences of the Republic of Tajikistan
Russian Federation

Candidate of Physico-Mathematical Sciences, Senior Researcher of theDzhuraev



B. M. Zamonov
Institute of Mathematics, Academy of Sciences of the Republic of Tajikistan
Russian Federation
Junior Researcher of the Dzhuraev


References

1. Vinogradov I. M. 1985, “Selected work”, Berlin–New York: Springer-Verlag, 401 p.

2. Haselgrove C.B. 1951, “Some theorems in the analitic theory of number”, J. London Math.Soc., 26, 273–277. doi: 10.1112/jlms/s1-26.4.273

3. Statulyavichus V. 1955, “On the representation of odd numbers as the sum of three almost equal prime numbers”, Vilnius, Uchenie trudi universiteta, Ser. mat. fiz. i khim. nauk, no 3, pp. 5–23.

4. Pan Cheng-dong, Pan Cheng-biao, 1990, “On estimations of trigonometric sums over primes in short intervals (III)”, Chinese Ann. of Math., vol.2, pp. 138–147.

5. Zhan T. 1991, “On the Representation of large odd integer as a sum three almost equal primes”, Acta Math Sinica, new ser., vol. 7, No 3, 135–170. doi: 10.1007/BF02583003

6. Liu J. Y., Zhan T. 1999, “Estimation of exponential sums over primes in short intervals I.”, Mh. Math, 127: 27–41. doi:10.1007/s006050050020

7. Rakhmonov Z. Kh., Rakhmonov F. Z. 2014, “Sum of Short Exponential Sums over Prime

8. Numbers”, Doklady Mathematics, vol. 90, No. 3, pp. 1–2.doi:10.1134/S1064562414070138

9. Rakhmonov F. Z. 2011, “Estimate of quadratic trigonometric sums with prime numbers”, Moscow University Mathematics Bulletin, vol. 66, no 3, pp. 129–132. doi: 10.3103/S0027132211030107

10. Rakhmonov Z. Kh., Rakhmonov F. Z. 2013, “The sum of short double trigonometric sums”, Doklady Akademii nauk Respubliki Tajikistan, vol. 56, no. 11, pp. 853–860.

11. Karatsuba A. A. 1993, “Basic Analytic Number Theory”, Springer-Verlag Berlin Heidlberg, 223 pp.

12. Vinogradov I. M. 1976, “Special Variants of the Method of Trigonometric Sums”, Moscow: Nauka, 122 p.

13. Mardjhanashvili K. K. 1939, “An estimate for an arithmetic sum”, Doklady Akad. Nauk SSSR, vol. 22, no 7, pp. 391-393.


Review

For citations:


Rakhmonov Z.Kh., Rakhmonov F.Z., Zamonov B.M. ESTIMATES OF SHORT CUBIC DOUBLE EXPONENTIAL SUMS WITH A LONG CONTINUOUS SUMMATION. Chebyshevskii Sbornik. 2016;17(1):217-231. (In Russ.) https://doi.org/10.22405/2226-8383-2016-17-1-217-231

Views: 460


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)