Continuity of Dirichlet series of 𝑠-dimensional lattices
https://doi.org/10.22405/2226-8383-2024-25-2-251-259
Abstract
In this work, Dirichlet series of 𝑠-dimensional lattices are studied. In particular, the theorem is proved that the Dirichlet series of 𝑠-dimensional lattices are continuous on the space of lattices in the region of their absolute convergence.
In conclusion, current problems for Dirichlet series of 𝑠-dimensional lattices that require further research are considered.
About the Authors
Roman Vladimirovich TarabrinRussian Federation
postgraduate student
Nikolai Nikolaevich Dobrovol’skii
Russian Federation
candidate of physical and mathematical sciences
Irina Yuryevna Rebrova
Russian Federation
candidate of physical and mathematical sciences
Nikolai Mikhailovich Dobrovol’skii
Russian Federation
doctor of physical and mathematical sciences, professor
References
1. Dobrovol’skii, N. M., Rebrova, I. YU. & Roshhenya, А. L., 1998, “Continuity of the hyperbolic
2. Zeta function of lattices”, Matematicheskie zametki, vol. 63, no. 4, pp. 522–526.
3. Dobrovol’skii, N. M., Roshhenya, А. L., 1998, “ On the number of lattice points in a hyperbolic
4. cross”, Matematicheskie zametki, vol. 63, no. 4, pp. 363–369.
5. Cassels J., 1965, “Introduction to the geometry of numbers”, M.: Mir.
6. Chandrasekharan K., 1974, Vvedenie v analiticheskuju teoriju chisel, Izd-vo Mir, Moskva, 188 p.
7. Chudakov N. G., 1947, Introduction to the theory of 𝐿-Dirichlet functions — M.-L.: OGIZ, —
8. p.
Review
For citations:
Tarabrin R.V., Dobrovol’skii N.N., Rebrova I.Yu., Dobrovol’skii N.M. Continuity of Dirichlet series of 𝑠-dimensional lattices. Chebyshevskii Sbornik. 2024;25(2):251-259. (In Russ.) https://doi.org/10.22405/2226-8383-2024-25-2-251-259