Preview

Chebyshevskii Sbornik

Advanced search

Continuity of Dirichlet series of 𝑠-dimensional lattices

https://doi.org/10.22405/2226-8383-2024-25-2-251-259

Abstract

In this work, Dirichlet series of 𝑠-dimensional lattices are studied. In particular, the theorem is proved that the Dirichlet series of 𝑠-dimensional lattices are continuous on the space of lattices in the region of their absolute convergence.
In conclusion, current problems for Dirichlet series of 𝑠-dimensional lattices that require further research are considered.

About the Authors

Roman Vladimirovich Tarabrin
Orenburg State University
Russian Federation

postgraduate student



Nikolai Nikolaevich Dobrovol’skii
Tula State Lev Tolstoy Pedagogical University
Russian Federation

candidate of physical and mathematical sciences



Irina Yuryevna Rebrova
Tula State Lev Tolstoy Pedagogical University
Russian Federation

candidate of physical and mathematical sciences



Nikolai Mikhailovich Dobrovol’skii
Tula State Lev Tolstoy Pedagogical University
Russian Federation

doctor of physical and mathematical sciences, professor



References

1. Dobrovol’skii, N. M., Rebrova, I. YU. & Roshhenya, А. L., 1998, “Continuity of the hyperbolic

2. Zeta function of lattices”, Matematicheskie zametki, vol. 63, no. 4, pp. 522–526.

3. Dobrovol’skii, N. M., Roshhenya, А. L., 1998, “ On the number of lattice points in a hyperbolic

4. cross”, Matematicheskie zametki, vol. 63, no. 4, pp. 363–369.

5. Cassels J., 1965, “Introduction to the geometry of numbers”, M.: Mir.

6. Chandrasekharan K., 1974, Vvedenie v analiticheskuju teoriju chisel, Izd-vo Mir, Moskva, 188 p.

7. Chudakov N. G., 1947, Introduction to the theory of 𝐿-Dirichlet functions — M.-L.: OGIZ, —

8. p.


Review

For citations:


Tarabrin R.V., Dobrovol’skii N.N., Rebrova I.Yu., Dobrovol’skii N.M. Continuity of Dirichlet series of 𝑠-dimensional lattices. Chebyshevskii Sbornik. 2024;25(2):251-259. (In Russ.) https://doi.org/10.22405/2226-8383-2024-25-2-251-259

Views: 507


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)