Scattering theory for the loaded negative order Korteweg–de Vries equation
https://doi.org/10.22405/2226-8383-2024-25-2-169-180
Abstract
In this paper, we consider the loaded negative order Korteweg–de Vries equation. The evolution of the spectral data of the Sturm–Liouville operator with a potential associated with the solution of the loaded negative order Korteweg–de Vries equation is determined. The obtained results make it possible to apply the inverse problem method to solve the loaded
negative order Korteweg–de Vries equation in the class of rapidly decreasing functions. An example of the given problem is given with graphs of the solution.
About the Authors
Gayrat Urazaliyevich UrazboevUzbekistan
doctor of physical and mathematical sciences
Iroda Ismailovna Baltaeva
Uzbekistan
candidate of physical and mathematical sciences
Oxunjon Bakhrom ugli Ismailov
Uzbekistan
References
1. Gardner, C. S., Greene, J. M., Kruskal, M. D. & Miura, R. M., 1967. “Method for Solving
2. Korteweg-Devries Equation”, Phys. Rev. Lett., vol. 19, pp. 1095–1097.
3. Lax, P. D., 1968. “Integrals of Nonlinear Equations of Evolution and Solitary Waves”, Communications on Pure and Applied Mathematics., vol. 21, pp. 467–490.
4. Leon, J. & Latifi, A., 1990. “Solution of an initial-boundary value problem for coupled nonlinear waves”, J. Phys. A., vol. 23, pp. 1385–1403.
5. Mel’nikov, V. K., 1988. “Exact solutions of the Korteweg-de Vries equation with a self-consistent source”, Phys. Lett., vol. 128, pp. 488–492.
6. Mel’nikov, V. K., 1990. “Integration of the Korteweg-de Vries equation with a source”, Inverse Problem., vol. 6, pp. 233–246.
7. Khasanov, A. B. & Khasanov, T. G., 2022. “Integration of a Nonlinear Korteweg–de Vries
8. Equation with a Loaded Term and a Source”, J. Appl. Ind. Math., vol. 16, pp. 227–239.
9. Khasanov, A. B. & Urazboev, G. U., 2009. “Integration of the sine-Gordon equation with a selfconsistent source of the integral type in the case of multiple eigenvalues”, Russ Math., vol. 53, pp. 45–55.
10. Urazboev, G. U. & Hasanov, M.M., 2022. “Integration of the negative order Korteweg-de Vries equation with a self-consistent source in the class of periodic functions”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki., vol. 32, pp. 228–239.
11. Verosky, J. M., 1991. “Negative powers of Olver recursion operators”, J. Math. Phys., vol. 32, pp. 1733–1736.
12. Lou, S. Y., 1994. “Symmetries of the KdV equation and four hierarchies of the integrodifferential KdV equation”, J. Math. Phys., vol. 35, pp. 2390–2396.
13. Qiao, Z. & Li, J., 2011. “Negative-order KdV equation with both solitons and kink wave
14. solutions”, Europhys. Lett., vol. 94, pp. 50003.
15. Zhijun, Q. & Engui, F., 2012. “Negative-order Korteweg–de Vries equations”, Phys. Rev. E., vol. 86, pp. 016601.
16. Rodriguez, M., Li, J. & Qiao, Z., 2022. “Negative Order KdV Equation with No Solitary
17. Traveling Waves”, Mathematics., vol. 10, pp. 48–58.
18. Urazboev, G. U., Baltaeva, I. I. & Ismoilov, O.B., 2023. “Integration of the negative order
19. Korteweg–de Vries equation by the inverse scattering method”, Vestn. Udmurtsk. Univ. Mat.
20. Mekh. Komp. Nauki., vol. 33, pp. 523–533.
21. Kneser, A., 1914. “Belastete Integralgleihungen”, Rendiconti del Circolo Mathematiko di
22. Palermo., vol. 38, pp. 169–197.
23. Lichtenstein, L., 1931. “Vorlesungen uber einege Klassen nichtlinear Integral gleichungen und Integral differential gleihungen nebst”, Anwendungen. Berlin: Springer.
24. Nakhushev, A. M., 1976. “The Darboux problem for a certain degenerate second order loaded integrodifferential equation”, Differential Equations., vol. 12, pp. 103–108.
25. Kozhanov, A. I., 2004. “Nonlinear loaded equations and inverse problems”, Zh. Vychisl. Mat. Mat. Fiz., vol. 44, pp. 1095–1097.
26. Baltaeva, U., Baltaeva, I. & Agarwal, P., 2022. “Cauchy problem for a high-order loaded integrodifferential equation”, Mathematical Methods in the Applied Sciences, vol. 45, pp. 8115–8124.
27. Urazboev, G. U., Baltaeva, I. I., 2022. “Integration of Camassa-Holm equation with a selfconsistent source of integral type”, Ufa Mathematical Journal, vol. 14, pp. 77–86.
28. Yakhshimuratov, A. B. & Matyokubov, M. M., 2016. “Integration of a Loaded Korteweg-de
29. Vries Equation in a Class of Periodic Functions”, Izvestiya Vysshikh Uchebnykh Zavedenii.
30. Matematika., vol. 69, pp. 87–92
31. Urazboev, G. U., Baltaeva, I. I. & Rakhimov, I. D., 2021. “The Generalized (G’/G)-Expansion Method for the Loaded Korteweg–de Vries Equation”, Journal of Applied and Industrial Mathematics., vol. 15, pp. 679–685
32. Feckan, M., Urazboev, G. & Baltaeva, I., 2022. “Inverse scattering and loaded Modified
33. Korteweg-de Vries equation”, Journal of Siberian Federal University. Mathematics and Physics., vol. 15, pp. 176–185.
Review
For citations:
Urazboev G.U., Baltaeva I.I., Ismailov O.B. Scattering theory for the loaded negative order Korteweg–de Vries equation. Chebyshevskii Sbornik. 2024;25(2):169-180. (In Russ.) https://doi.org/10.22405/2226-8383-2024-25-2-169-180