Asymptotic formula in the Waring’s problem with almost proportional summands
https://doi.org/10.22405/2226-8383-2024-25-2-139-168
Abstract
For 𝑛 ≥ 3, an asymptotic formula is derived for the number of representations of a sufficiently
large natural number 𝑁 as a sum of 𝑟 = 2𝑛 + 1 summands, each of which is an 𝑛-th power of
natural numbers 𝑥𝑖, 𝑖 = 1, 𝑟, satisfying the conditions
where 𝜇1, . . . , 𝜇𝑟 are positive fixed numbers, and 𝜇1 +. . .+𝜇𝑛 = 1. This result strengthens the theorem of E.M.Wright.
About the Authors
Zarullo Khusenovich RakhmonovTajikistan
doctor of physical and mathematical sciences, professor,
academician of the NAS of Tajikistan
Firuz Zarulloevich Rakhmonov
Tajikistan
candidate of physical and mathematical sciences
References
1. Wright E. M., 1934, “Proportionality conditions in Waring’s problem”, Mathematische
2. Zeitschrift, vol. 38, pp. 730-746.
3. Wright E. M., 1933, “An extension of Waring’s problem”, Philosophical Transactions of the
4. Royal Society of London, Series A, vol. 232. pp. 1-26.
5. Dirk Daemen, 2010., “The asymptotic formula for localized solutions in Waring’s problem and approximations to Weyl sums”, Bull. London Math. Soc., vol. 42, pp. 75-82.
6. Dirk Daemen, 2010, “Localized solutions in Waring’s problem: the lower bound”, Acta
7. Arithmetica, vol. 142, pp. 129-143.
8. Dirk Daemen, 2010, “ On sums of 13 ‘almost equal’ cubes”, Quart. J. Math., vol. 61, pp. 29-32. doi:10.1093/qmath/han024
9. Rakhmonov, Z. Kh., 2014, “The Estermann cubic problem with almost equal summands“,
10. Mathematical Notes, vol. 95, Is. 3-4, pp. 407–417. doi.org/10.1134/S0001434614030122.
11. Rakhmonov Z. Kh., & Nazrubloev N. N., Rakhimov A.O., 2015, “Short Weyl sums and their
12. applications”, Chebyshevskii Sbornik, vol. 16, Is. 1, pp. 232–247, (in Russian).
13. Rakhmonov Z. Kh., & Azamov A.Z., Nazrubloev N. N., 2018, “Of short Weyl’s exponential sum in minor arcs”, Doklady Akademii nauk Respubliki Tajikistan, vol. 61, no 7-8, pp. 609-614, (in Russian).
14. Rakhmonov Z. Kh., & Mirzoabdugafurov K. I., 2008, “Waring’s problem for cubes with almost equal summands”, Doklady Akademii nauk Respubliki Tajikistan, vol. 51, no 2, pp. 83-86, (in Russian).
15. Rakhmonov Z. Kh., & Azamov A.Z., 2011, “An asymptotic formula in Waring’s problem for
16. fourth powers with almost equal summands”, Doklady Akademii nauk Respubliki Tajikistan,
17. vol. 54, no 3, pp. 34-42, (in Russian).
18. Rakhmonov Z. Kh., & Nazrubloev N. N., 2014, “Waring’s problem for fifth powers with almost equal summands”, Doklady Akademii nauk Respubliki Tajikistan, vol. 57, no 11-12, pp. 823-830, (in Russian).
19. Rakhmonov Z. Kh., 2003, “Estermann’s ternary problem with almost equal summands”,
20. Mathematical Notes, vol. 74, Is. 4, pp. 534-542. doi.org/10.1023/A:1026199928464.
21. Rakhmonov F. Z., & Rakhimov A. O., 2015, “On an additive problem with almost equal
22. summands”, Issledovaniya po algebre, teorii chisel, funktsional’nomu analizu i smezhnym
23. voprosam. Izdatel’stvo: Saratovskiy natsional’nyy issledovatel’skiy gosudarstvennyy universitet im. N.G. Chernyshevskogo, ISSN: 1810-4134, no 8, pp. 87–89, (in Russian).
24. Rakhmonov Z. Kh., 2023, “Generalization of Waring’s problem for nine almost proportional
25. cubes”, Chebyshevskii Sbornik, vol. 24, Is. 3, pp. 71–94, (in Russian).
26. Vaughan R. C., 1981, “Some remarks on Weyl sums”, Topics in Classical Number Theory,
27. Colloquia. Math. Soc. Janos Bolyai, 34. 1981. P. 1585 – 1602.
28. Karatsuba A. A. & Korolev M. A. 2007. “A theorem on the approximation of a trigonometric
29. sum by a shorter one”, Izvestiya: Mathematics, 71(2), pp. 341 – 370.
30. Vaughan R. C., 1981. “The Hardy-Littlewood method”, Cambridge Tracts in Mathematics, vol. 80, Cambridge University Press, Cambridge, 172 p.
31. Hua Loo-Keng, 1964. “Method of Trigonometric Sums and Its Applications in Number Theory”, Nauka, Moscow, 190 p. (Russian translation); Absch¨atzungen von Exponentialsummen und ihre Anwendung in der Zahlentheorie. 2. v¨ollig neu bearb. Auf, Enzyklop¨adie Math. Wiss. Band. I,
32. Teil, Heft 13, Art. 29. Leipzig: B. G. Teubner Verlag. 123 S. (1959).
33. Arkhipov G. I. & Chubarikov V. N. & Karatsuba A. A. 2004. “Trigonometric sums in number
34. theory and analysis”, Berlin–New-York: Walter de Gruyter, 554 p.
35. Whittaker G. E., & Watson T. N., 1915. “A Course of Modern Analysis. Part 1.”, The processes of analysis. Part 2. The transcendental functions, Cambridge, Cambridge University Press, 620.
Review
For citations:
Rakhmonov Z.Kh., Rakhmonov F.Z. Asymptotic formula in the Waring’s problem with almost proportional summands. Chebyshevskii Sbornik. 2024;25(2):139-168. (In Russ.) https://doi.org/10.22405/2226-8383-2024-25-2-139-168