SUMS OF CHARACTERS MODULO A CUBEFREE AT SHIFTED PRIMES
https://doi.org/10.22405/2226-8383-2016-17-1-201-216
Abstract
Vinogradov’s method of estimation of exponential sums over primes allowed him to solve the number of arithmetic problems with primes. One of them is a problem of distribution of the values of non-principal character on the sequence of shifted primes. In 1938 he proved that if q is an odd prime, (l, q) = 1, χ(a) is non-principal character modulo q, then T(χ) = X p6x χ(p − l) ≪ x1+ε r 1 q + q x + x−1 6 . (IMV ) This estimate is non-trivial when x ≫ q1+ε and an asymptotic formula for the the number of quadratic residues (non-residues) modulo q of the form p − l, p 6 x follows from it. Later in 1953, I. M. Vinogradov obtained a non-trivial estimate of T(χ) when x > q0,75+ε, q is a prime. It was a surprising result. In fact, T(χ) can be represented as a sum over zeroes of correspondent Dirichlet L — function; So a non-trivial estimate of T(χ) is obtained only for x > q1+ε provided that the extended Riemann hypothesis is true. In 1968 A. A. Karatsuba found a method that allowed him to obtain non-trivial estimate of short sums of characters in finite fields with fixed degree. In 1970 using the modification of his technique coupled with Vinogradov’s method he proved that: if q is a prime number, χ is non-principal character modulo q and x > q 1 2+ε, then the following estimate is true T(χ) ≪ xq− 1 1024 ε2 . In 1985 Z. Kh. Rakhmonov generalized the estimate (IMV) for the case of composite modulo and proved: let D is a sufficiently large positive integer, χ is a non-principal character modulo D, χq is primitive character generated by character χ, then
T(χ) 6 x ln5 x r 1 q + q x τ 2(q1) + x−1 6 τ (q1) , q1 = p\D p ̸ \q
p. If a character χ coincides with it generating primitive character q, then the last estimate is non-trivial for x > q(ln q)13. In 2010 г. J. B. Friedlander, K. Gong, I. E. Shparlinski showed that a non-trivial estimateof the sum T(χq) exists for composite q when x — length of the sum, is of smaller order than q. They proved: for a primitive character χq and an arbitrary ε > 0 there exists such δ > 0 that for all x > q 8 9+ε the following estimate holds: T(χq) ≪ xq−δ. In 2013 Z. Kh. Rakhmonov obtained a non-trivial estimate of T(χq) for the composite modulo q and primitive character χq when x > q 5 6+ε. In this paper the theorem about the estimate of the sum T(χq) is proved for cubefree modulo q. It is non-trivial when x > q 5 6+ε.
About the Authors
Z. Kh. RakhmonovRussian Federation
doctor of physical andmathematical sciences, professor, corresponding member of Academy of Sciences of the Republic of Tajikistan, director of the Dzhuraev Institute of Mathematics
Sh. Kh. Mirzorakhimov
Russian Federation
References
1. Vinogradov I. M. 1985, “Selected work”, Berlin-New York: Springer-Verlag, 401 p.
2. Vinogradov I. M. 1952, , “New approach to the estimation of a sum of values of χ(p + k)”, Izvestiya Akad. Nauk SSSR. Ser. Mat., vol. 16, no 3, pp. 197—210
3. Vinogradov I. M. 1953, “Improvement of an estimate for the sum of the values χ(p+k)”, Izvestiya Akad. Nauk SSSR. Ser. Mat., vol. 17, no 4, pp. 285—290.
4. Karatsuba A. A. 1970, “On sums of characters with primes”, Sov. Math. Dokl., vol. 11, pp. 135– 137.
5. Karatsuba A. A. 1970, “Sums of characters over prime numbers” Math. USSR-Izv., vol. 4, no 2, pp. 303–326. doi.org/10.1070/IM1970v004n02ABEH000907.
6. Rakhmonov Z. Kh. 1986, “On the distribution of values of Dirichlet characters”, Russian Math. Surveys, vol. 41, no 1, pp. 237–238. doi:10.1070/RM1986v041n01ABEH0032.
7. Rakhmonov Z. Kh. 1986, “Estimation of the sum of characters with primes” Dokl. Akad. Nauk Tadzhik. SSR, vol 29, no. 1, pp. 16–20 (in Russian).
8. Rakhmonov Z. Kh., 1995, “On the distribution of the values of Dirichlet characters and their applications”, Proc. Steklov Inst. Math., vol. 207, no. 6, pp. 263–272.
9. Fridlander Dzh. B., Gong K., & Shparlinskii I. E., 2010, “Character sums over shifted primes”, Math. Notes, vol. 88, no 3–4, pp. 585–598. doi:10.1134/S0001434610090312.
10. Rakhmonov Z. Kh., 2013, “Distribution of values of Dirichlet characters in the sequence of shifted primes”, Doklady Akademii nauk Respubliki Tajikistan, vol. 56, no. 1, pp. 5–9.
11. Rakhmonov Z. Kh., 2013, “Distribution of values of Dirichlet characters in the sequence of shifted primes”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., vol. 13, no 4(2), pp. 113– 117.
12. Rakhmonov Z. Kh., 2014, “Sums of characters over prime numbers”, Chebyshevskii Sb. vol. 15, no 2, pp. 73–100.
13. Burgess D. A. 1962, “On character sums and L — series”, Proc. London Math. Soc., vol. s3-12, no 1, pp. 193–206. doi:10.1112/plms/s3-12.1.193.
14. Burgess D. A. 1963, “On character sums and L — series. II”, Proc. London Math. Soc., vol. s3-13, no. 1, pp. 524–536. doi:10.1112/plms/s3-13.1.524.
15. Mardjhanashvili K. K. 1939, “An estimate for an arithmetic sum”, Doklady Akad. Nauk SSSR, vol. 22, no 7, pp. 391–393.
Review
For citations:
Rakhmonov Z.Kh., Mirzorakhimov Sh.Kh. SUMS OF CHARACTERS MODULO A CUBEFREE AT SHIFTED PRIMES. Chebyshevskii Sbornik. 2016;17(1):201-216. (In Russ.) https://doi.org/10.22405/2226-8383-2016-17-1-201-216