Elimination of maximal jumps
https://doi.org/10.22405/2226-8383-2024-25-1-176-183
Abstract
This article continues a series of papers devoted to explicit constructions of Galois extension of complete discrete valuation fields of characteristic 0 with the residue field of prime characteristic 𝑝, see [5], [6], [7], [8], [4], [10] and a survey article [9].
It is proved that any 𝑝-extension of a complete discrete valuation field containing a primitive 𝑝-th root of unity can be embedded into a tower of Artin-Schreier extensions; an estimate for the height of this tower is obtained. This result also shows that such an extension can be embedded into Inaba extension, i. e., an extension obtained by the construction from [2]; an estimate for the order of the corresponding matrix is also obtained.
Next, it is proved that any Galois 𝑝-extension of such field can be decomposed into a tower of Galois extensions of degree 𝑝 such that several upper levels have the maximal ramification jump whereas the lower ones are Artin-Schreier extensions.
About the Authors
Igor Borisovich ZhukovRussian Federation
doctor of physical and mathematical sciences
Olga Yur’evna Ivanova
Russian Federation
candidate of physical and mathematical sciences
References
1. Hyodo, O., 1987, “Wild ramification in the imperfect residue field case”, Adv. Stud. Pure Math., vol. 12, pp. 287-314.
2. Inaba, E., 1961, “On matrix equations for Galois extensions of fields with characteristic 𝑝”, Natur. Sci. Rep. Ochanomizu Univ., vol. 12, pp. 26-36.
3. Fesenko, I. B., Vostokov, S. V., Zhukov I. B. 1990, “On the theory of multidimensional local fields. Methods and constructions”, Algebra i Analiz vol. 2, № 4. pp. 91-118.
4. Ivanova, O. Yu. 2022 “Construction of a cyclic ferocious extension by means of an Inaba equation”, J. Math. Sci., vol. 513, № 4. pp. 74-84.
5. Vostokov, S. V., Zhukov, I. B. 1995, “Some approaches to the construction of abelian extensions for p-adic fields”, Proceedings of the St. Petersburg Mathematical Society, vol. III, pp. 157–174, Amer. Math. Soc. Transl. Ser. 2, 166, Amer. Math. Soc., Providence, RI, 1995.
6. Vostokov, S. V., Zhukov, I. B., Ivanova, O. Yu. 2019 “Inaba extensions of complete fields of characteristic 0” Chebyshevskii sbornik vol. 20, № 3, pp. 124-133
7. Zhukov, I. B., Lysenko, E. F. 2018, “Construction of cyclic extensions of degree 𝑝^2 for a complete field”, J. Math. Sci., vol. 234(2), pp. 148–157
8. Zhukov I. B., Ivanova, O. Yu. 2022 “On Inaba extensions for two-dimensional local fields of mixed characteristic”, J. Math. Sci., vol. 513, № 4. pp. 57-73.
9. Zhukov, I. B., Ivanova, O. Yu. “Explicit constructions of extensions of complete fields of characteristic 0” Chebyshevskii sbornik, to appear.
10. Zhukov, I., 2000, “Explicit abelian extensions of complete discrete valuation fields”, in book: Fesenko, I., Kurihara, M. (eds.) Invitation to Higher Local Fields. Geometry and Topology Monographs, vol. 3, pp. 117-122.
11. MacKenzie, R. E., Whaples, G., 1956, “Artin–Schreier equations in characteristic zero”, Amer. J. Math., vol. 78, pp. 473-485.
12. Vostokov, S. V., Zhukov, I. B., Pak, G.K. 1999, “Extensions with almost maximal depth of ramification”, J. Math. Sci., vol. 112, № 3, pp. 4285-4302
Review
For citations:
Zhukov I.B., Ivanova O.Yu. Elimination of maximal jumps. Chebyshevskii Sbornik. 2024;25(1):176-183. (In Russ.) https://doi.org/10.22405/2226-8383-2024-25-1-176-183