Preview

Chebyshevskii Sbornik

Advanced search

On some product of SM-groups

https://doi.org/10.22405/2226-8383-2024-25-1-170-175

Abstract

A subgroup 𝐴 of a group 𝐺 is called tcc-subgroup in 𝐺, if there is a subgroup 𝑇 of 𝐺 such that 𝐺 = 𝐴𝑇 and for any 𝑋 ⩽ 𝐴 and 𝑌 ⩽ 𝑇 there exists an element 𝑢 ∈ ⟨𝑋, 𝑌 ⟩ such that 𝑋𝑌^𝑢 ≤ 𝐺. The notation 𝐻 ⩽ 𝐺 means that 𝐻 is a subgroup of a group 𝐺. In this paper we proved that the class of all SM-groups is closed under the product of tcc- subgroups. Here an SM-group is a group where each subnormal subgroup permutes with every maximal subgroup.

About the Authors

Dmitry Vladimirovich Gritsuk
A. S. Pushkin Brest State University
Belarus

candidate of physical and mathematical sciences



Alexander Aleksandrovich Trofimuk
A. S. Pushkin Brest State University
Russian Federation

doctor of physical and mathematical sciences



References

1. Monakhov, V. S. 2006. “Introduction to the Theory of Finite Groups and Their Classes”, Vysh. Shkola, Minsk, [in Russian].

2. Ballester-Bolinches, A., “Esteban-Romero, R. & Asaad, M. 2010. “Products of finite groups”, Walter de Gruyter, Berlin.

3. Skiba, A. N., 2003. “𝐻-permutable subgroups”, Izv. Gom. state F. Skaryna University, no. 4, pp. 37–39.

4. Trofimuk, A. A., 2021. “On the supersolubility of a group with some tcc-subgroups”, Journal of Algebra and Its Applications, 2150020 (18 pages).

5. Trofimuk, A. A., 2021. “A remark on a product of two tcc-subgroups”, Chebyshevskii sbornik, vol. 22, no. 1, pp. 495–501.

6. Guo, W., Shum, K.P. & Skiba, A. N., 2006. “Criterions of supersolubility for products of supersoluble groups”, Publ. Math. Debrecen, vol. 68, no. 3-4, pp. 433–449.

7. Asaad, M. & Shaalan, A., 1989. “On the supersolubility of finite groups”, Arch. Math., vol. 53, pp. 318–326.

8. Arroyo-Jorda, M., Arroyo-Jorda, P., Martinez-Pastor, A. & Perez-Ramos, M. D., 2014. “On conditional permutability and factorized groups”, Annali di Matematica Pura ed Applicata, vol. 193, pp. 1123–1138.

9. Guo, W., 2015. Structure theory for canonical classes of finite groups, Springer, Berlin, Heidelberg, New York.

10. Beidleman, J. C. & Heineken, H., 2003. “Pronormal and subnormal subgroups and permutability”, Boll. Un. Mat. Ital., vol. 6, no. 8, pp. 605–615.

11. Arroyo-Jorda, M. & Arroyo-Jorda, P., 2017. “Conditional permutability of subgroups and certain classes of groups”, J. Algebra, vol. 476, pp. 395–414.

12. Beidleman, J. C., Heineken, H. & Hauck, P., 2004. “Totally permutable products of certain classes of finite groups”, J. Algebra, vol. 276, pp. 826–835.


Review

For citations:


Gritsuk D.V., Trofimuk A.A. On some product of SM-groups. Chebyshevskii Sbornik. 2024;25(1):170-175. (In Russ.) https://doi.org/10.22405/2226-8383-2024-25-1-170-175

Views: 243


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)