𝑊𝑡− Distance over 𝑏− Metric Space
https://doi.org/10.22405/2226-8383-2024-25-1-155-163
Abstract
In this paper, we examine the 𝑤𝑡−distance characteristics over 𝑏−metric space and the conditions required to ensure the presence of the fixed point by letting 𝛽−function appropriately.
In addition, we prove some fixed point theorems.
About the Authors
Eman AlmukhurJordan
department of basic science and humanities
Maysoon Qousini
Jordan
department of mathematics
Abeer Alnana
Saudi Arabia
department of mathematics
Manal Al-Labadi
Jordan
department of mathematics
References
1. Czerwik S. 1998, “Nonlinear set-valued contraction mappings in 𝑏−metric spaces”, Atti del Seminario Matematico e Fisico dell’Universita di Modena, 46, pp. 263–276.
2. Bakhtin, I.A., 1989. “The contraction mapping principle in quasimetric spaces”, Journal of Functional Analysis, 30, pp. 26–37.
3. Gromov M.,1981. “Groups of polynomial growth and expanding maps”, Publications Math´ematiques de l’Institut des Hautes ´ Etudes Scientifiques, 53: pp. 53–73.
4. doi:10.1007/BF02698687. MR 0623534. S2CID 121512559. Zbl 0474.20018.
5. Kurepa, D.J., 1934. “Tableaux ramifi´es d’ensembles, espaces pseudodistaci´es”, Comptes Rendus de l’Acad´emie des Sciences . Paris, 198, pp. 1563–1565.
6. Branciari A., 2000. “A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces”, Publicationes Mathematicae Debrecen, 57, pp. 31–37. MR1771669.
7. Suzuki T.,2017. “Journal of Inequalities and Applications”, 256, pp. 1–11. http://dx.doi.org/10.1186/s13660-017-1528-3.
8. Singh SL, Czerwik S, Kr´ol, K. & Singh, 2008. “A Coincidences and fixed points of hybrid contractions”, Tamsui Oxford Journal of Information and Mathematical Sciences, 24, pp. 401–416.
9. Rockafellar R, Tyrrell; Wets, Roger J-B, 2005. “Variational Analysis”, Springer-Verlag, p. 117.
10. Berinde, V., 1993. “‘Generalized contractions in quasimetric spaces”, Semin. Fixed Point Theory, 3, pp. 3–9.
11. Rus, I.A.,2001. “Generalized Contractions and Applications”, Cluj University Press: Clui-Napoca, Romania.
12. Karapınar E, Chifu C., 2020. “Results in 𝑤𝑡-Distance over 𝑏-Metric Spaces”, SIGMA Mathematics, 220(8), pp. 1–10.
13. Popescu, O., 2014. “Some new fixed point theorems for 𝛽−Geraghty contractive type maps in metric spaces”, Fixed Point Theory and Applications, 190 p.. https://doi.org/10.1186/1687-1812-2014-190.
14. Khojasteh, F., Shukla, S., Radenovi, C. S., 2015. “A new approach to the study of fixed point theorems via simulation functions”, Filomat, 29, pp. 1189–1194.
15. Aydi, H.,2011. “Fixed point results for weakly contractive mappings in ordered partial metric spaces”, Journal of Advanced Mathematical Studies, 4(2), pp. 1–12.
16. Al-Sharif, S., Al-Khaleel, M., Khandaqji, M., 2012. “Coupled Fixed Point Theorems for Nonlinear Contractions in Partial Metric Spaces”, International Journal of Mathematics and Mathematical Sciences, pp. 1-12.
Review
For citations:
Almukhur E., Qousini M., Alnana A., Al-Labadi M. 𝑊𝑡− Distance over 𝑏− Metric Space. Chebyshevskii Sbornik. 2024;25(1):155-163. (In Russ.) https://doi.org/10.22405/2226-8383-2024-25-1-155-163