Preview

Chebyshevskii Sbornik

Advanced search

𝑊𝑡− Distance over 𝑏− Metric Space

https://doi.org/10.22405/2226-8383-2024-25-1-155-163

Abstract

In this paper, we examine the 𝑤𝑡−distance characteristics over 𝑏−metric space and the conditions required to ensure the presence of the fixed point by letting 𝛽−function appropriately.
In addition, we prove some fixed point theorems.

About the Authors

Eman Almukhur
Applied Science Private University (Amman, Jordan).
Jordan

department of basic science and humanities



Maysoon Qousini
Al-Zaytoonah University of Jordan (Amman, Jordan).
Jordan

department of mathematics



Abeer Alnana
Prince Sattam Bin Abdulaziz University (Al-Kharj, Saudi Arabia).
Saudi Arabia

department of mathematics



Manal Al-Labadi
University Of Petra (Amman, Jordan).
Jordan

department of mathematics



References

1. Czerwik S. 1998, “Nonlinear set-valued contraction mappings in 𝑏−metric spaces”, Atti del Seminario Matematico e Fisico dell’Universita di Modena, 46, pp. 263–276.

2. Bakhtin, I.A., 1989. “The contraction mapping principle in quasimetric spaces”, Journal of Functional Analysis, 30, pp. 26–37.

3. Gromov M.,1981. “Groups of polynomial growth and expanding maps”, Publications Math´ematiques de l’Institut des Hautes ´ Etudes Scientifiques, 53: pp. 53–73.

4. doi:10.1007/BF02698687. MR 0623534. S2CID 121512559. Zbl 0474.20018.

5. Kurepa, D.J., 1934. “Tableaux ramifi´es d’ensembles, espaces pseudodistaci´es”, Comptes Rendus de l’Acad´emie des Sciences . Paris, 198, pp. 1563–1565.

6. Branciari A., 2000. “A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces”, Publicationes Mathematicae Debrecen, 57, pp. 31–37. MR1771669.

7. Suzuki T.,2017. “Journal of Inequalities and Applications”, 256, pp. 1–11. http://dx.doi.org/10.1186/s13660-017-1528-3.

8. Singh SL, Czerwik S, Kr´ol, K. & Singh, 2008. “A Coincidences and fixed points of hybrid contractions”, Tamsui Oxford Journal of Information and Mathematical Sciences, 24, pp. 401–416.

9. Rockafellar R, Tyrrell; Wets, Roger J-B, 2005. “Variational Analysis”, Springer-Verlag, p. 117.

10. Berinde, V., 1993. “‘Generalized contractions in quasimetric spaces”, Semin. Fixed Point Theory, 3, pp. 3–9.

11. Rus, I.A.,2001. “Generalized Contractions and Applications”, Cluj University Press: Clui-Napoca, Romania.

12. Karapınar E, Chifu C., 2020. “Results in 𝑤𝑡-Distance over 𝑏-Metric Spaces”, SIGMA Mathematics, 220(8), pp. 1–10.

13. Popescu, O., 2014. “Some new fixed point theorems for 𝛽−Geraghty contractive type maps in metric spaces”, Fixed Point Theory and Applications, 190 p.. https://doi.org/10.1186/1687-1812-2014-190.

14. Khojasteh, F., Shukla, S., Radenovi, C. S., 2015. “A new approach to the study of fixed point theorems via simulation functions”, Filomat, 29, pp. 1189–1194.

15. Aydi, H.,2011. “Fixed point results for weakly contractive mappings in ordered partial metric spaces”, Journal of Advanced Mathematical Studies, 4(2), pp. 1–12.

16. Al-Sharif, S., Al-Khaleel, M., Khandaqji, M., 2012. “Coupled Fixed Point Theorems for Nonlinear Contractions in Partial Metric Spaces”, International Journal of Mathematics and Mathematical Sciences, pp. 1-12.


Review

For citations:


Almukhur E., Qousini M., Alnana A., Al-Labadi M. 𝑊𝑡− Distance over 𝑏− Metric Space. Chebyshevskii Sbornik. 2024;25(1):155-163. (In Russ.) https://doi.org/10.22405/2226-8383-2024-25-1-155-163

Views: 496


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)