Preview

Chebyshevskii Sbornik

Advanced search

On congruence lattices of algebras with an operator and the symmetric main operation

https://doi.org/10.22405/2226-8383-2024-25-1-103-115

Abstract

In this paper we study properties of congruence lattices of algebras with one operator and the main symmetric operation. A ternary operation 𝑑(𝑥, 𝑦, 𝑧) satisfying identities 𝑑(𝑥, 𝑦, 𝑦) = 𝑑(𝑦, 𝑦, 𝑥) = 𝑑(𝑦,𝑥,𝑦)= 𝑥 is called a minority operation. The symmetric operation is a
minority operation defined by specific way. An algebra 𝐴 is called a chain algebra if 𝐴 has a linearly ordered congruence lattice. An algebra 𝐴 is called subdirectly irreducible if 𝐴 has the smallest nonzero congruence. An algebra with operators is an universal algebra whose signature consists of two nonempty non-intersectional parts: the main part which can contain arbitrary operations, and the additional part consisting of operators. The operators are unary operations that act as endomorphisms with respect to the main operations, i.e., one are permutable with the main operations. An unar is an algebra with one unary operation. If 𝑓 is the unary operation from the signature Ω then the unar ⟨𝐴, 𝑓⟩ is called an unary reduct of algebra ⟨𝐴,Ω⟩.
A description of algebras with one operator and the main symmetric operation that have a linear ordered congruence lattice is obtained. It shown that algebra of given class is a chain algebra if and only if one is subdirectly irreducible. For algebras of given class we obtained necessary and sufficient conditions for the coincidence of their congruence lattices and congruence lattices of unary reducts these algebras.

About the Author

Vadim Leonidovich Usoltsev
Volgograd State Pedagogical University
Russian Federation

candidate of physical and mathematical sciences



References

1. Tamura, T. 1969, “Commutative semigroups whose lattice of congruences is a chain”, Bulletin de la Soci´et´e Math´ematique de France, vol. 97, pp. 369–380. DOI: 10.24033/bsmf.1689

2. Schein, B. M. 1969, “Commutative semigroups where congruences form a chain”, Bulletin L’Acad´emie Polonaise des Science, S´erie des Sciences Math´ematiques, Astronomiques et Physiques, vol. 17, pp. 523–527.

3. Schein, B. M. 1975, “Corrigenda to “Commutative semigroups where congruences form a chain” ”, Bulletin L’Acad´emie Polonaise des Science, S´erie des Sciences Math´ematiques, Astronomiques et Physiques, vol. 23, pp. 1247–1248.

4. Nagy, A. & Jones, P. R. 2004, “Permutative Semigroups Whose Congruences Form a Chain”, Semigroup Forum, vol. 69. pp. 446–456. DOI: 10.1007/s00233-004-0131-3

5. Kozhukhov, I. B. 1981, “Left chain semigroups”, Semigroup Forum, vol. 22, pp. 1–8. DOI: 10.1007/BF02572781

6. Popovich, A. L. & Jones, P. R. 2017, “On congruence lattices of nilsemigroups”, Semigroup Forum, vol. 95, no. 2, pp. 314–320. DOI: 0.1007/s00233-016-9837-2

7. Goldberg, M. S. 1983, “Distributive double p-algebras whose congruence lattices are chains”, Algebra Universalis, vol. 17, pp. 208—215. DOI: 10.1007/BF01194530

8. Egorova, D.P. 1978, “The congruence lattice of a unary algebra”, Uporyadochennie mnojestva i reshetki: Mejvuzovskii nauchnii sbornik (Ordered sets and lattices), Saratov, no. 5, pp. 11–44. (Russian)

9. Kartashova, A. V. 2014, “On commutative unary algebras with totally ordered congruence lattice”, Mathematical Notes, vol. 95, no. 1, pp. 67-77. DOI: 10.1134/S0001434614010076

10. Szendrei, A. 1986, “Clones in universal algebra”, Les presses de l’Universit´e de Montr´eal, Montr´eal, 166 p.

11. Hyndman J., Nation J. B. & Nishida J. 2016, “Congruence lattices of semilattices with operators”, Studia Logica, vol. 104, no 2, pp. 305–316. DOI: 10.1007/s11225-015-9641-0

12. Garcia, P. & Esteva, F. 1995, “On Ockham Algebras: Congruence Lattices and Subdirectly Irreducible Algebras”, Studia Logica, vol. 55, pp. 319–346. DOI: 10.1007/BF01061240

13. Kartashov, V. K. 1999, “On unars with Mal’tsev operation”, Universal’naya algebra i ee prilozheniya: Tezisy soobshcheniy uchastnikov mezhdunarodnogo seminara, posvyashchennogo pamyati prof. Mosk. gos. un-ta L.A. Skornyakova (Universal algebra and application: theses of Int. workshop dedicated memory of prof. L. A. Skornyakov), Volgograd, pp. 31–32. (Russian)

14. Usoltsev, V. L. 2021, “On Rees closure in some classes of algebras with an operator”, Chebyshevskiy sbornik, vol. 22, no. 2(78), pp. 271–287. (Russian) DOI: 10.22405/2226-8383-2018-22-2-271-287

15. Usoltsev, V. L. 2008, “Unars with ternary Mal’tsev operation”, Uspekhi matematicheskikh nauk, vol. 63, no. 5, pp. 201–202; translated in Russian Mathematical Surveys, 2008, vol. 63, no. 5, pp. 986-987. DOI: 10.1070/RM2008v063n05ABEH004572

16. Usoltsev, V. L. 2005, “On subdirectly irreducible unars with Mal’tsev operation”, Izvestiya Volgogradskokgo gosudarstvennogo pedagogicheskogo universiteta. Seriya "Estestvennye i fizikomatematicheskie nauki", vol. 4, pp. 17–24 (Russian).

17. Usoltsev, V. L. 2012, “On polynomially complete and Abelian unars with Mal’tsev operation”, Uchenye Zapiski Orlovskogo Gosudarstvennogo Universiteta, vol. 6(50), part 2, pp. 229–236. (Russian)

18. Usoltsev, V. L. 2014, “On Hamiltonian ternary algebras with operators”, Chebyshevskiy sbornik, vol. 15, no. 3(51), pp. 100–113. (Russian) DOI: 10.22405/2226-8383-2014-15-3-100-113

19. Mar´oti M., McKenzie R. 2008, “Existence theorems for weakly symmetric operations”, Algebra Universalis, vol. 59, no. 3-4, pp. 463-489. DOI: 10.1007/s00012-008-2122-9

20. Bulatov A., Krokhin A. & Jeavons P. 2005, “The complexity of constraint satisfaction: An algebraic approach”, Structural Theory of Automata, Semigroups and Universal Algebra, Berlin, Springer-Verlag, pp.181–213. DOI: 10.1007/1-4020-3817-8_8

21. Baker, K. A. & Pixley, A. 1975, “Polynomial interpolation and the Chinese Remainder Theorem for algebraic systems”, Math. Zeitschrift, vol. 143, pp. 165–174. DOI: 10.1007/BF01187059

22. Markovi´c, P. & McKenzie, R. 2008, “Few subpowers, congruence distributivity and nearunanimity terms” , Algebra Universalis, vol. 58, pp. 119–128. DOI: 10.1007/s00012-008-2049-1

23. Usol’tsev, V. L. 2021, “Subdirectly Irreducible Algebras in One Class of Algebras with One Operator and the Main Near-Unanimity Operation”, Lobachevskii Journal of Mathematics, vol. 42, no. 1, pp. 206–216. DOI: 10.1134/S199508022101025X

24. Usoltsev, V. L. 2016, “On congruence lattices of algebras with one operator and basic nearunanimity operation”, Nauchno-tekhnicheskiy vestnik Povolzhya, vol. 2, pp. 28–30 (Russian).

25. Wenzel, G. H. 1970, “Subdirect irreducibility and equational compactness in unary algebras ⟨𝐴; 𝑓⟩”, Archiv der Mathematik, Basel, vol. 21, pp. 256–264. DOI: 10.1007/BF01220912

26. Lata, A. N. 2017, “On congruence coherent Rees algebras and algebras with an operator”, Chebyshevskiy sbornik, vol. 18, no. 2(62), pp. 154–172. (Russian) DOI: 10.22405/2226-8383-2017-18-2-154-172

27. Usoltsev, V. L. 2021, “The subdirect irreducibility and the atoms of congruence lattices of algebras with one operator and the symmetric main operation”, Chebyshevskiy sbornik, vol. 22, no. 2(78), pp. 257–270. (Russian) DOI: 10.22405/2226-8383-2021-22-2-257-270

28. Usoltsev, V. L. 2010, “Simple and pseudosimple algebras with operators”, Journal of Mathematical Sciences, vol. 164, no. 2, pp. 281-293. DOI: 10.1007/S1095800997306


Review

For citations:


Usoltsev V.L. On congruence lattices of algebras with an operator and the symmetric main operation. Chebyshevskii Sbornik. 2024;25(1):103-115. (In Russ.) https://doi.org/10.22405/2226-8383-2024-25-1-103-115

Views: 261


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)