Preview

Chebyshevskii Sbornik

Advanced search

Quadratic forms corresponding to the faces of the Voronoi domain of perfect form in six variables

https://doi.org/10.22405/2226-8383-2024-25-1-16-25

Abstract

The problem of classifying integer quadratic forms has a long history, during which many mathematicians have contributed to its solution. Binary forms were comprehensively studied by Gauss. He and later researchers also outlined the main ways to solve the problem of classifying ternary forms and forms of higher dimensions. The greatest achievements of the subsequent period were the deep development of the theory of rational quadratic forms and the complete classification of indefinite forms in dimensions 3 and higher by Eichler in terms of spinor genera. The paper proposes an algorithm for calculating non-equivalent quadratic forms corresponding to the faces of the Voronoi domain of the second perfect form in many variables, and using this algorithm, all corresponding non-equivalent quadratic forms are calculated.

About the Author

Otabek Hudaiberdievich Gulomov
V. I. Romanovsky Institute of Mathematics of the Academy of Sciences of the Republic of Uzbekistan
Russian Federation

candidate of physical and mathematical sciences



References

1. Delone, B. N., 1938. “Geometry of positive quadratic forms. Part II”, Uspekhi Mat. Nauk, no. 4, pp. 102—164.

2. Ryshkov S. S., Baranovskii E. P., 1979. “Classical methods of the theory of lattice packings”, Uspekhi Mat. Nauk, vol. 34, no. 4(208), pp. 3–63, 256.

3. Korkine, A., Zolotareff, G., 1873. “Sur les formes quadratiques”, Math. Ann., 6, pp.366–389.

4. Korkine, A., Zolotareff, G., 1877. “Sur les formes quadratiques positives”, Math. Ann., 11. pp. 242–292.

5. Voronoi, G., 1907. “Sur quelgues proprietes des formes quadratiques positives par-faites”, J.reine und angew. Math., Bd. 133, pp.97–178.

6. Barnes E. S., 1957. “The complete enumeration of extreme senary forms”, Philos. Trans Roy. Soc., London, V. A249, no. A969, P.461-506.

7. Minkowski H., 1905. “Diskontinui tetsbereich fur Arithmetische Aquivalenz”, J.reine and angev. Math., 129, pp.220–284.

8. Rogers, C. A., 1964. “Packing and Covering”, Cambridge Tracts in Mathematics and Mathematical Physics, No. 54, Cambridge University Press, viii + 109 pp., 30s.

9. Ryshkov S. S., 1970. Basic extremal problems in the geometry of positive quadratic forms. Doctoral dissertation. M. 171 p.

10. Gulomov O. Kh., 2023. “The neighborhood of the Voronoi main perfect form from five variables, Chebyshevskii Sbornik, 241, pp. 219—227.

11. Gulomov O. Kh., Khudayarov B. A., Ruzmetov K. Sh., Turaev F. Zh., 2021. “Quadratic forms related to the voronoi’s domain faces of the second perfect form in seven variables”, Dynamics of Continuous, Discrete and Impulsive Systems Series B: Applications and Algorithmsthis link is disabled, Vol. 28, Iss. 1, pp. 15-–23.

12. Sobolev S. L., 1974. “Introduction to the Theory of Cubature Formulas”, Moscow, Nauka, 808 p. (in Russian).

13. Shadimetov Kh. M., 2019. “Optimal lattice quadrature and cubature formulas in Sobolev spaces”, Tashkent: Fan technology, 224 p.

14. Shadimetov Kh. M., Gulomov O. Kh., 2023. “Computing Perfect Forms in Five Variables Using the Improved Voronoi Algorithm”, AIP Conference Proceedings, 2781, 020047.

15. Shadimetov Kh. M., Hayotov A. R., Karimov R. S., 2023. “Optimization of Explicit Difference Methods in the Hilbert Space (𝑊_2)^(2,1) ”, AIP Conference Proceedings, 2781, 00054.


Review

For citations:


Gulomov O.H. Quadratic forms corresponding to the faces of the Voronoi domain of perfect form in six variables. Chebyshevskii Sbornik. 2024;25(1):16-25. (In Russ.) https://doi.org/10.22405/2226-8383-2024-25-1-16-25

Views: 543


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)