Preview

Chebyshevskii Sbornik

Advanced search

SELF-IMPROVEMENT OF (θ, p) POINCAR´E INEQUALITY FOR p > 0

https://doi.org/10.22405/2226-8383-2016-17-1-187-200

Abstract

Classical Poincar´e (θ, p)-inequality on Rn   1 μ(B) ˆ B  f(y) − 1 μ(B) ˆ B f dμ  θ dμ(y)   1/θ . rB   1 μ(B) ˆ B |∇f|p dμ 
   1/p , (rB is the radius of ball B ⊂ Rn) has a self-improvement property, that is (1, p)-inequality, 1 < p < n, implies the «stronger»  q, p)-inequality (Sobolev-Poincar´e), where 1/q = 1/p − 1/n (inequality A . B means that A 6 cB with some inessential constant c). Such effect was investigated in a series of papers for the inequalities of more general type   1 μ(B) ˆ B |f(y) − SBf|θ dμ(y)   1/θ  . η(rB)   1 μ(B) ˆ σB gp dμ   1/p for functions on metric measure spaces. Here f ∈ Lθ loc, g ∈ Lp loc, and SBf is some number depending on the ball B and on the function f, η is some positive increasing function, σ > 1. Usually mean value of the function f on a ball B is chosen as SBf, and the case p > 1 is considered. We investigate self-improvement property for such inequalities on quasimetric measure spaces with doubling condition with parameter γ > 0. Unlike previous papers on this topic we consider the case θ, p > 0. In this case functions are not required to be summable, and we take SBf = I(θ) B f. Here I(θ) B f is the best approximation of the function f in Lθ(B) by constants. We prove that if η(t)t−α increases with some α > 0, then for 0 < p < γ/α and θ > 0 (θ, p)-inequality Poincar´e implies (q, p)-inequality with 1/q > 1/p − γ/α. If p > γ(γ + α)−1 (then the function f is locally integrable) then it implies also (q, p)-inequality with mean value instead of the best approximations I(θ) B f. Also we consider the cases αp = γ and αp > γ. If αp = γ, then (q, p)-inequality with any q > 0 follows from Poincar´e (θ, p)-inequality and moreover some exponential Trudinger type inequality is true. If αp > γ then Poincar´e (θ, p)-inequality implies the inequality |f(x) − f(y)| . η(d(x, y))[d(x, y)]−γ/p . [d(x, y)]α−γ/p for almost all x and y from any fixed ball B (. does depend on B).

About the Author

A. I. Porabkovich
Belarussian State University
Russian Federation
post-graduate student


References

1. Haj lasz, P., Koskela, P. 2000, ”Sobolev met Poincar´e” , Memoirs of Amer. Math. Soc. vol. 145, pp. 1–115.

2. Ivanishko, I.A., Krotov, V.G. 2006, ”Generalized Poincar´e–Sobolev inequality on metric spaces” , Inst. of Math. of NAS of Belarus, vol. 14, №1, pp. 51–61.

3. Ignat’eva, E.V. 2007, ”Sobolev–Poincar´e-type inequality on metric spaces in terms of sharpmaximal functions” , Math. Notes, vol. 81, №1, pp. 121–125.

4. Krotov, V.G. 2013, ”Maximal Functions Measuring Smoothness” , In Recent Advances in Harmonic Analysis and Applications In Honor of Konstantin Oskolkov, Springer Proc. in Math. and Stat., vol. 25, pp. 197–223.

5. Calder´on, A.P. 1972, ”Estimates for singular integral operators in terms of maximal functions” , Studia Math. vol. 44, pp. 167–186.

6. Calder´on, A.P., Scott, R. 1978, ”Sobolev type inequalities for p > 0” , Studia Math. vol. 62, pp. 75–92.

7. DeVore, R., Sharpley R. 1984, ”Maximal functions measuring local smoothness” , Memoirs of the Amer. Math. Soc. vol. 47, pp. 1–115.

8. Haj lasz, P. 1996, ”Sobolev spaces on an arbitrary metric spaces” , Potential Anal. vol. 5, №4, pp. 403–415.

9. Coifman, R.R., Weiss, G. 1971, ”Analyse harmonique non-commutative sur certain espaces homogen´es” , Lecture Notes in Math vol. 242, pp. 1–176.

10. Heinonen, J. 2001, ”Lectures on Analysis on Metric Spaces” , Springer-Verlag, Berlin

11. Stein, E. 1970, ”Singular integrals and differentiability properties of functions” , Prinston Univ. Press.

12. Krotov, V.G. 2010, ”Quantitative form of the Luzin C-property” , Ukr. Math. J.. vol. 62, №3, pp. 441–451.

13. Krotov, V.G. 2012, ”Criteria for compactness in Lp-spaces, p > 0” , Sbornik: Mathematics vol. 303, №7, pp. 1045–1064.

14. Krotov, V.G., Porabkovich, A.I. 2015, ”Estimates of Lp-oscillations of functions for p > 0” , Math. Notes vol. 97, №3, pp. 384–395.

15. Trudinger, N. 1967, ”On embedding into Orlicz spaces and some applications” , J. Math. Mech. vol. 17, pp. 473–483.


Review

For citations:


Porabkovich A.I. SELF-IMPROVEMENT OF (θ, p) POINCAR´E INEQUALITY FOR p > 0. Chebyshevskii Sbornik. 2016;17(1):187-200. (In Russ.) https://doi.org/10.22405/2226-8383-2016-17-1-187-200

Views: 602


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)