Preview

Chebyshevskii Sbornik

Advanced search

On one additive problem connected with expansions on linear recurrrent sequence

https://doi.org/10.22405/2226-8383-2023-24-3-228-241

Abstract

Let 𝑎1, . . . , 𝑎𝑑 be natural numbers satisfying condition 𝑎1 ≥ 𝑎2 ≥ . . . ≥ 𝑎𝑑−1 ≥ 𝑎𝑑 = 1.
Define sequence {𝑇𝑛} using the linear recurrent relation 𝑇𝑛 = 𝑎1𝑇𝑛−1 + 𝑎2𝑇𝑛−2 + . . . + 𝑎𝑑𝑇𝑛−𝑑 and initial conditions 𝑇0 = 1, 𝑇𝑛 = 1 + 𝑎1𝑇𝑛−1 + 𝑎2𝑇𝑛−2 + . . . + 𝑎𝑛𝑇0 for 𝑛 < 𝑑. Let N(𝑤) be a set of natural numbers for which the greedy expansion on the linear recurrent sequence {𝑇𝑛} ends with some word 𝑤. Here 𝑤 is chosen in such a way that so that the set N(𝑤) is non-empty.
We study the problem about the number 𝑟𝑘(𝑁) of representations of a natural number 𝑁 in as the sum of 𝑘 terms from N(𝑤).
Using the previously obtained description of the sets N(𝑤) in terms of shifts of tori of dimension 𝑑 − 1, an asymptotic formula for the number of representations 𝑟𝑘(𝑁) is obtained, and also found upper bounds for the number of representations.
Conditions on 𝑘 that ensure the existence of considered representations for all sufficiently large natural numbers 𝑁 are found. In particular, such representations exist if , where 𝑚 is the length of the fixed end 𝑤 of the greedy expansion.
In addition, an asymptotic formula is obtained for the average number of representations.
In conclusion, several unsolved problems are formulated.

About the Author

Anton Vladimirovich Shutov
Khabarovsk Division of the Institute for Applied Mathematics, Far Eastern Branch, Russian Academy of Sciences
Russian Federation


References

1. Drmota, M. & Gajdosik, J. 1998, “The Parity of the Sum-of-Digits-Function of Generalized Zeckendorf Representations“, Fibonacci Quarterly, vol. 36, no. 1, pp. 3-19. doi: 10.1007/s002290050221.

2. Lamberger, M., Thuswaldner, J. W. 2003, “Distribution properties of digital expansions arising from linear recurrences“, Mathematicf Slovaca, vol. 53, no. 1, pp. 1-20.

3. Shutov, A. 2020, “On sum of digits of the Zeckendorf representations of two consecutive numbers“, Fibonacci Quarterly, vol. 58, no. 3, pp. 203-207.

4. Shutov, A. V. 2020, “On one sum associated with Fibonacci numeration system“, Far Eastern Mathematical Journal, vol. 20, no. 2, pp. 271-275. (Russian). doi: 10.47910/FEMJ202028

5. Drmota, M. & Gajdosik, J. 1998, “The distribution of the sum-of-digits function“, Journal de Theorie des Nombres de Bordeaux, vol. 10, no. 1. pp. 17-32. doi:10.5802/jtnb.216.

6. Zhukova, A.A. & Shutov, A.V. 2021, “On Gelfond-type problem for generalized Zeckendorf representations“, Chebyshevskii Sbornik, vol. 22, no. 2, pp. 104–120. (Russian). doi:10.22405/2226-8383-2018-22-2-104-120.

7. Zhuravlev, V. G. 2008. “Chetno-fibonachchevy chisla: binarnaja additivnaja zadacha, raspredelenie po progressijam i spectr“, Algebra i analiz, vol. 20, no. 3, pp. 18-46. (Russian) translation in St. Petersburg Mathematical Journal, 2009, 20:3, 339-360. doi: 10.1090/S1061-0022-09-01051-6.

8. Davletjarova, E. P., Zhukova, A. A. & Shutov, A. V. 2013. “Geometrizacija sistemy schislenija Fibonacci i ee prilozhenija k teorii chisel“ Algebra i analiz, vol. 25, no. 6, pp. 1-23. (Russian) translation in St. Petersburg Mathematical Journal, 2014, 25:6, 893-907. doi:10.1090/S1061-0022-2014-01321-0.

9. Davletjarova, E. P., Zhukova, A. A. & Shutov, A. V. 2016. “Geometrizacija obobshhennyh sistem schislenija Fibonacci i ee prilozhenija k teorii chisel“ Chebyshevskii sbornik, vol. 17, no. 2, pp. 88-112. (Russian)

10. Zhukova, A. A. & Shutov, A. V. 2017, “Geometrization of numeration systems“, Chebyshevskii Sbornik, vol. 18, no. 4, pp. 222—245. doi:10.22405/2226-8383-2017-18-4-221-244.

11. Parry, W. 1950, “On the 𝛽-expansions of real numbers“, Acta Math. Acad. Sci. Hungar., vol. 11, no. 3, pp. 401–416. doi:10.1007/BF02020954.

12. Shutov, A.V. 2021. “Generalized Rauzy tilings and linear recurrence sequences“, Chebyshevskii Sbornik vol. 22, no. 2, pp. 313–333. (Russian). doi: 10.22405/2226-8383-2018-22-2-313-333.

13. Shutov, A. V. 2013. “On one additive problem with fractional parts“, Nauchn. ved. BelGU. Ser. math. phys., vol. 5 (148):30, pp. 111–120.

14. Zhukova, A.A. & Shutov, A.V. 2022. “Additive Problem with 𝑘 Numbers of a Special Form“, Journal of Mathematical Sciences, vol. 260, pp. 163–174. doi: 10.1007/s10958-022-05681-7.

15. Niederreiter, H. & Wile, M. 1975. “Diskrepanz und Distanz von Maßlen bez¨uglich konvezer und Jordanscher Mengen“, Math. Z., vol. 144, no. 1, pp. 125-134. doi:/10.1007/BF01190941.

16. G¨otz, M. 2002. “Discrepancy and error in integration“, Monatsh. Math., vol. 136, pp. 99–121. doi:10.1007/s006050200037.

17. Macbeath, A.M. 1953. “On measure of sum sets II: the sum theorem for the torus“ // Mathematical Proceedings of the Cambridge Philosophical Society, vol.49, no. 1, pp. 40–43. doi:10.1017/S0305004100028012.

18. Frougny, C. & Solomyak, B. 1992, “Finite beta-expansions“, Ergodic Theory and Dynamical Systems, vol. 12. no. 4, pp. 713-–723. doi:10.1017/S0143385700007057.

19. Gricenko, S. A. & Mot’kina, N. N. 2009. “Zadacha Hua-Lokena s prostymi chislami special’nogo vida“, DAN respubliki Tadzhikistan, Vol. 52, no. 7, pp. 497-500. (Russian).

20. Gricenko, S. A. & Mot’kina, N. N. 2011. “On Chudakov’s theorem involving primers of a special type“, Chebyshevskii sbornik, Vol. 12, no. 4, pp. 75-84. (Russian).

21. Gricenko, S.A. & Mot’kina, N. N. 2009. “Ob odnom variante ternarnoj problemy Gol’dbaha“, DAN respubliki Tadzhikistan, Vol. 52, no. 6, pp. 413-417. (Russian).

22. Gricenko, S.A. & Mot’kina, N. N. 2014. “Waring’s promblem involving natural numbers of a special type“, Chebyshevskii sbornik, Vol. 15, no. 3, pp. 31-47. (Russian).


Review

For citations:


Shutov A.V. On one additive problem connected with expansions on linear recurrrent sequence. Chebyshevskii Sbornik. 2023;24(3):228-241. (In Russ.) https://doi.org/10.22405/2226-8383-2023-24-3-228-241

Views: 270


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)