The exact Jackson–Stechkin inequality in 𝐿2,𝜇𝛼
https://doi.org/10.22405/2226-8383-2023-24-3-139-161
Abstract
Several extremal problems on the best mean-square approximation of the functions 𝑓, on a semiaxis with a power-law weight are solved in the paper, which can be applied in solving various problems. Exact Jackson–Stechkin-type inequalities are obtained for some classes of functions in which the values of the best approximations are estimated from above in terms of 𝑘-th order Hankel moduli of smoothness.
About the Author
Tilektes Ereshovich TileubayevKazakhstan
References
1. Korneichuk N.P., 1987, “Exact constants in approximation theory“ Moskow, Nauka, [in Russian].
2. Chernykh N. I., “On the Jackson inequality in 𝐿2“, Tr.MIAN SSSR.1967 Vol. 88, P.71-74.
3. Chernykh N. I., 1967, “On the best approximation of periodic functions by trigonometric polynomials in 𝐿2“, Math. notes., Vol.2 № 5. P. 513-522.
4. Shalaev B. B., 1991, “Widths in 𝐿2 of Classes of Differentiable Functions Defined by Continuity of Higher Order Modules“, Ukr. Mat. jour. Vol. 3 № 1. P. 104-107.
5. Ibragimov I. I., Nasibov V. I., 1970, “Estimate of the best approximation of an integrable function on the real axis using entire functions of finite degree“, Dokl. acad. USSR Academy of Sciences, Vol. 194, № 5. P. 1013-1016.
6. Popov V. Yu., 1970, “On Exact Constants in Jackson’s Inequalities for the Best Spherical Root-Mean-Square Approximations“, Russian Math.(Iz. VUZ) 1970, Vol. 12,235 P. 67-80.
7. Arestov V. V., Popov V.Yu., 1981, “Jackson’s inequalities on the sphere in L2“, Russian Math.jour., Vol.39, № 8. P.11-18.
8. Babenko A. G., 1998, “Exact Jackson-Stechkin inequality for 𝐿2(𝑅𝑚)“, Tr. IMM UB RAS. Vol.5, № 3. P. 183-198.
9. M. Sh. Shabozov, G. A. Yusupov, “Best Polynomial Approximations in L2 of Classes of 2𝜋-Periodic Functions and Exact Values of Their Widths”, Math. Notes, 90:5 (2011), pp. 748–757
10. Li J. , Liu Y.P., 2008, “The Jackson inequality for the best 𝐿2-approximation of functions on [0, 1] with the weight x“ Numer. Math. Theory Methods Appl. Vol. 1, № 3 P.340-356
11. Li J. , Liu Y.P., Chun-Mei Su., 2012,“Jackson inequality and widths of function classes in 𝐿2([0, 1], 𝑥2𝜈+1)“, Journal of Complexity. Vol. 28, P.582-596
12. E. E. Berdysheva, “Two related extremal problems for entire functions of several variables“, Math. Notes, 66:3 (1999), pp. 271–282
13. Moskovsky A. V., 1997, “Jackson’s theorems in the spaces 𝐿𝑝(𝑅𝑛) and 𝐿𝑝, 𝜆(𝑅+)“, Izv. TulGU. ser. mathematics, mechanics, informatics. Volume. 194, № 3, pp. 44-70
14. D. V. Gorbachev, “Extremum problems for entire functions of exponential spherical type“, Math. Notes, 68:2 (2000), 159–166
15. V. I. Ivanov, “On the Sharpness of Jackson’s Inequality in the Spaces Lp on the Half-Line with Power Weight”, Math. Notes, 98:5 (2015), 742–751
16. M. G. Esmaganbetov, “Widths of classes from 𝐿2[0, 2𝜋] and the minimization of exact constants in Jackson-type inequalities”, Math. Notes, 65:6 (1999), 689–693
17. Shabozov M. Sh., Tukhliev K., Murodov K.N. “Exact estimates of the rate of convergence of Fourier-Bessel ranks and values of n-widths of some classes of functions“, Questions of Computational and Applied Mathematics 2015 No. 2 40-47.
18. Taikov L. V.,1976, “An inequality containing the best approximations and the modulus of continuity of functions from 𝐿2“, Math. notes, Vol 20, № 3 P. 433–438
19. G. Bateman G., Erdeyi A., 1966, Higher transcendental functions. Bessel functions, parabolic cylinder functions, orthogonal polynomials M. Nauka
20. Levitan V. M., 1951, “Expansion in Bessel functions in Fourier series and integrals“, Uspekhi Mat. Vol 42, № 6:2 P. 102-143.
21. Platonov S. S., 2007 “Bessel harmonic analysis and approximation of functions on the half-line“, Izv. Math., 71:5 (2007), pp. 1001–1048
22. Abilov V. A., Abilova F.V., Kerimov M. K., “Sharp estimates for the convergence rate of Fourier–Bessel series“, Comput. Math. Math. Phys., 55:6 (2015), pp. 907–916
23. Abilov V. A., Abilova F. V., Kerimov M. K., “Sharp estimates for the rate of convergence of double Fourier series in classical orthogonal polynomials”, Comput. Math. Math. Phys., 55:7 (2015), pp. 1094–1102
24. Platonov S. S., 2000, “Generalized Bessel shifts and some problems in the theory of approximations of functions in the 𝐿2 metric. I“, Proceedings of PSU. Vol.7, P. 70-83
25. Stein I.M , Weiss G. 1974 Introduction to harmonic analysis on Euclidean spaces M. Mir
26. Yudin V. A., 1997, “Extremal properties of functions and designs on a torus“, Mat. Notes Vol. 61, No. 4 P. 637–640
27. Lizorkin P.I., Nikol’skii S.M. 1983 “A theorem concerning approximation on the sphere“, Anal. Math. Vol. 9, P.207–221
28. Rustamov Kh.P., 1993 “On the approximation of functions on a sphere“, Izv.RAN. Ser. Mat., 1993 Vol. 57, 5 P. 127–148
29. Nikol’skii S. M., Lizorkin P. I. 1987 “Approximation of functions on a sphere“Izv.RAN. Ser. math. Vol. 51, 3 P.635-651
30. Vakarchuk S. B., Shabozov M. Sh., and Zabutnaya V. I. 2015 “ Structural characteristics of functions from 𝐿2 and the exact values of widths of some functional classes“ Journal of Mathematical Sciences, Vol. 206, № 1 P.97-114
31. Gorbachev D. V. 2015 “An estimate of an optimal argument in the sharp multidimensional Jackson–Stechkin L2-inequality“, Proc. Steklov Inst. Math. (Suppl.), 288, suppl. 1, pp. 70–78
32. Watson N.G., 1949, Theory of Bessel functions M. Izd. foreign liters
33. Shabozov M. Sh.2010, “Widths of some classes of periodic functions in the space 𝐿2[0, 2𝜋], 𝐿2“, Mat. notes., Vol. 87, No. 4, P.616–623.
34. Vakarchuk S.B., Shabozov M.Sh., and Langarshoev M.R. 2014, “On the best mean square approximations by entire functions of exponential type in 𝐿2(𝑅) and mean 𝜈-widths of some functional classes“, Russian Math.(Iz. VUZ). № 7, p. 30–48.
35. Vakarchuk S.B. 2014 “Jackson - type inequalities for the special moduli of continuity on the entire real axis and the exact values of mean 𝜈-widths for the classes of functions in the space 𝐿2(𝑅) “ Ukrainian Mathematical Journal. Vol. 66, No. 6, pp. 827–856.
36. Ligun A.A. 1978 “Some inequalities between best approximations and moduli of continuity in the space 𝐿2“ Mat. notes., Vol 24, No. 6, pp. 785–792.
Review
For citations:
Tileubayev T.E. The exact Jackson–Stechkin inequality in 𝐿2,𝜇𝛼. Chebyshevskii Sbornik. 2023;24(3):139-161. (In Russ.) https://doi.org/10.22405/2226-8383-2023-24-3-139-161