Preview

Chebyshevskii Sbornik

Advanced search

On polyadic numbers

https://doi.org/10.22405/2226-8383-2023-24-2-276-283

Abstract

The ring of polyadic numbers can be defined in several ways. One can introduce a metrizable topology on the ring of integers by counting the set of ideals (𝑚) by a complete system of neighborhoods of zero. The complete system of neighborhoods in the ring of integers is a collection of sets of the form 𝑎 + (𝑚). The operations of addition and multiplication are continuous in this topology and the ring of integers with this topology is a topological ring.
Completion of the resulting topological ring of integers - this is the ring of polyadic numbers.
An equivalent definition is the inverse (projective) limit 

$$ lim ←−𝑚Z/𝑚!Z.$$ 

Let’s recall that the canonical decomposition of the polyadic number 𝜆 has the form

$$𝜆 =∞Σ︁𝑛=0𝑎𝑛𝑛!, 𝑎𝑛 ∈ Z, 0 ≤ 𝑎𝑛 ≤ 𝑛.$$

This series converges in any field of 𝑝− adic numbers Q𝑝 .Denoting the sum of this series in the field Q𝑝 with the symbol 𝜆(𝑝), we get that any polyadic number 𝜆 can be considered as an element of the direct product of rings of integer 𝑝− adic numbers Z𝑝 for all primes 𝑝. The
converse statement is also true, meaning that the ring of polyadic integers coincides with this direct product. However, evidence of the latter claim could not be found. The purpose of this note is to fill this gap. In addition, some applications of polyadic numbers are described.

About the Author

Vladimir Grirorevich Chirskii
Lomonosov Moscow State University; Russian Presidential Academy of National Economy and Public Administration
Russian Federation

doctor of physical and mathematical sciences



References

1. Pr¨ufer H.1925. “Neue Begr¨undung der algebraischen Zahlentheorie“,Math.Ann, Vol, 94,№ 3-4. pp.198-243.

2. Postnikov A.G. 1971.“Introduction to Analytic Number Theory “,Nauka.,416 pp.

3. Novoselov. E.V.1963.“A new method in probabilistic number theory.“,Izvestiya vuzov, Math., № 5, pp.71-78.

4. Novoselov. E.V.1964.“Fundamentals of classical analysis and theory of analytic functions in polyadic domain.“IAN SSSR, Math.,Vol.28 № 2, pp.307-364.

5. Fomin A.A.1999. “Some mixed abelian groups as modules over the ring of pseudo-rational numbers“, Abelian Groups and Modules.Trends in Math. Birkh¨aeuser,Basel, pp.87-100.

6. Fomin A.A.2001. “Quotient divisible mixed groups“, Abelian Groups, Rings and Modules. Amer. Math. Soc. Series Contemporary Mathematics, Vol.273. pp.117-128.

7. Krylov P.A.,Pahomova Е.G. 2001. “ Abelian groups and regular modules“, ( Math. Zametki). Vol. 69.№ 3.pp.402-411.

8. Timoshenko T.A. V. G.,2011. “Projective modules over the ring of pseudo-rational numbers“, ( J.SFU, nath.,phys.),Vol.4. № 4,pp.541-550.

9. Tsarev A. V. 2006. “Modules over the ring of pseudo-rational numbers and factor divisible groups“, Algebra and Analysis., Vol.18, № 4, pp.945-953.

10. Tsarev A. V. 2008. “ Certain morphisms of modules over the ring of pseudo-rational numbers“, SFU.Math.J, Vol.49, № 4, pp.198-214.

11. Bertrand D., Chirskii V.G.,Yebbou. J. 2004.“ Effective estimates for global relations on Eulertype series“Annales Fac.Sci.Toulouse.-v.13.-№ 2.-pp.241-260.

12. Chirskii V.G.2019. “ Product Formula, Global Relations and Polyadic Integers.“, Russ. J. Math. Phys., Vol.26, № 3, pp.286-305.

13. Chirskii V.G.2020. “ Arithmetic properties of generalized hypergeometric F- series“, Russ. J. Math. Phys., Vol.27, № 2, pp.175-184.

14. Chirskii V.G.2020. “ Arithmetic Properties of Euler-Type Series with a Liouvillean Polyadic Parameter“, Dokl. Math., Vol.102, № 2, pp.412-413.

15. Chirskii V.G.2021. “ Arithmetic Properties of an Euler-Type Series with Polyadic Liouville Parameter“, Russ.J.Math.Phys., Vol.28, № 3, pp.293-302.

16. Chirskii V.G.2022. “ New Problems in the Theory of Transcendental Polyadic Numbers“, Dokl. Math., Vol.106, № 1, pp.265-267.

17. Chirskii V.G.2022. “ Arithmetic Properties of the Values of Generalized Hypergeometric Series with Polyadic Transcendental Parameter “, Dokl. Math., Vol.106, № 2, pp.386-397.

18. Yudenkova E.Yu.2021.“ Infinite linear and algebraic independence pf values of F-series at polyadic Liouvillean point .“, Chebyshevsky sbornik, Vol. 22, № 2, pp.334-346.

19. Matveev V.Yu. 2019. “ Properties of elements of direct products of fields“, Chebyshevsky sbornik, Vol. 20, № 2, pp.383-390.

20. Krupitsin E. S. 2019. “ Arithmetic properties of series of certain classes“, Chebyshevsky sbornik, Vol. 20, № 2, pp.374-382.


Review

For citations:


Chirskii V.G. On polyadic numbers. Chebyshevskii Sbornik. 2023;24(2):276-283. (In Russ.) https://doi.org/10.22405/2226-8383-2023-24-2-276-283

Views: 280


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)