Preview

Chebyshevskii Sbornik

Advanced search

Integration of the KdV equation of negative order with a free term in the class of periodic functions

https://doi.org/10.22405/2226-8383-2023-24-2-266-275

Abstract

In this paper, we consider the KdV equation of negative order with a free term in the class of periodic functions. It is shown that the KdV equation of negative order with a free term in the class of periodic functions can be integrated by the method of the inverse spectral problem.
The evolution of the spectral data of the Sturm-Liouville operator with a periodic potential associated with the solution of a negative-order KdV equation with a free term in the class of periodic functions is determined. The results obtained make it possible to apply the inverse
problem method to the solution of the KdV equation of negative order with a free term in the class of periodic functions.

About the Authors

Muzaffar Maksharipovich Khasanov
Urganch State University
Uzbekistan

candidate of physical and mathematical sciences



Ilkhom Davronbekovich Rakhimov
Urganch State University
Uzbekistan

postgraduate student



References

1. Gardner C.S. Greene J.M., Kruskal M.D., Miura R.M. 1967, “Method for solving the Kortewegde Vries equation“, Phys. Rev. Lett., vol. 19, № 19, pp. 1095-1097.

2. Novikov S.P. 1974, “The periodic problem for the Korteweg—de vries equation“, Funct Anal Its Appl, vol. 8, pp. 236–246.

3. Dubrovin B.A., Novikov S.P. 1974, Periodic and conditionally periodic analogues of multisoliton solutions of the Korteweg-de Vries equation“, ZhETF., vol. 67, № 12, pp. 2131-2143.

4. Marchenko V.A. 1974, “Korteweg-de Vries periodic problem“, Math. Sat., vol. 95, № 3, pp. 331-356.

5. Dubrovin B.A. 1975, “Periodic Problem for the Korteweg-de Vries Equation in the Class of Finite-Gap Potentials“, Funct. analysis and application, vol. 9, № 3, pp. 41-51.

6. Its A.R., Matveev V.B. 1975, “Finite-gap Schr¨odinger operators and 𝑁-soliton solutions of the Korteweg-de Vries equation“, Teoret. mat. Phys., vol. 23, № 1, pp. 51-68.

7. Lax P. 1974, “Periodic solutions of the KdV equations“, Lecture in Appl. Math. AMS., vol. 15, pp. 85-96.

8. Lax P. 1975, “Periodic Solutions of the KdV equation“, Comm. Pure and Appl. Math., vol. 28, pp. 141-188.

9. Melnikov V.K. 1988, “Method for integrating the Korteweg-de Vries equation with a selfconsistent source“, Preprint. Dubna.

10. Khasanov A.B., Yakhshimuratov A.B. 2010, “On the Korteweg-de Vries equation with a selfconsistent source in the class of periodic functions“, Teoret. mat. Phys., vol. 164, № 2, pp. 214-221.

11. Yakhshimuratov A.B. 2011, “Integration of the Korteweg-de Vries equation with a special free term in the class of periodic functions“, Ufimskii Matem. magazine. - Ufa., vol. 3, № 4, pp. 144-150.

12. Verosky J.M. 1991, “Negative powers of Olver recursion operators“, J. Math. Phys., vol. 32, pp. 1733-1736.

13. Lou S.Y. 1994, “Symmetries of the KdV equation and four hierarchies of the integrodifferential KdV equations“, J. Math. Phys., vol. 35, pp. 2390-2396.

14. Degasperis A., Procesi M. 1999, “Asymptotic integrability, in symmetry and perturbation theory“, edited by A. Degasperis and G. Gaeta, World Scientific., pp. 23-37.

15. G. P., Qiao Z.J. 2007, “Cuspons and smooth solitons of the Degasperis-Procesi equation under inhomogeneous boundary condition“, Mathematical Physics, Analysis and Geometry., vol. 10, pp. 205-225.

16. Qiao Z.J., Fan E.G. 2012, “Negative-order Kortewe-de Vries equations“, Phys. Rev., vol. 86, pp. 016601.

17. Chen J.B. 2018, “Quasi-periodic solutions to a negative-order integrable system of 2-component KdV equation“, Int. J. Geom. Methods Mod. Phys., vol. 15, № 03, pp. 1-34.

18. Qiao Z.J., Li J.B. 2011, “Negative-order KdV equation with both solitons and kink wave solutions“, Euro. Phys. Lett., vol. 94, pp. 50003.

19. Zhao S., Sun Y. A 2016, “Discrete negative order potential Korteweg–de Vries equation“, Z. Naturforsch., vol. 71(12)A. pp. 1151-1158.

20. Chen J. 2019, “Quasi-periodic solutions to the negative-order KdV hierarchy“, Int. J. Geom. Methods Mod. Phys., vol. 15, pp. 1850040.

21. Rodriguez M., Li J., Qiao Z. 2022, “Negative Order KdV equation with no solitary traveling waves“, Mathematics., vol. 10, pp. 48.

22. Wazwaz A. 2017, “Negative-order KdV equations in (3+1) dimensions by using the KdV recursion operator“, Waves Random Complex Media., vol. 27, pp. 768.

23. Kuznetsova M. 2022, “Necessary and sufficient conditions for the spectra of the Sturm-Liouville operators with frozen argument“, Applied Mathematics Letters., vol. 131, pp. 108035.

24. Titchmarsh E.Ch. 1961, “Eigenfunction Expansions Associated with Second-Order Differential Equations“, In 2 vols. - M.: IL., vol. 2, pp. 556.

25. Magnus W., Winkler W. 1966, “Hill’s equation“, New York: Interscience Wiley..

26. Stankevich I.V. 1970, “On a Problem of Spectral Analysis for the Hill Equation“, DAN SSSR., vol. 192, № 1, pp. 34-37.

27. Marchenko V.A., Ostrovsky I.V. 1975, “Characterization of the spectrum of the Hill operator“, Math. Sat., vol. 97. pp. 540-606.

28. Trubowitz E. 1977, “The inverse problem for periodic potentials“, Comm. Pure and Appl. Math., vol. 30, pp. 321-337.

29. Levitan B.M., Sargsyan I.S. 1988, “Sturm-Liouville and Dirac operators“, M.: Nauka.


Review

For citations:


Khasanov M.M., Rakhimov I.D. Integration of the KdV equation of negative order with a free term in the class of periodic functions. Chebyshevskii Sbornik. 2023;24(2):266-275. (In Russ.) https://doi.org/10.22405/2226-8383-2023-24-2-266-275

Views: 249


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)