Preview

Chebyshevskii Sbornik

Advanced search

The problem of finding a function by its ball means values

https://doi.org/10.22405/2226-8383-2023-24-2-63-80

Abstract

A classical property of a non-constant 2𝑟-periodic function on the real axis is that it has no period incommensurable with 𝑟. One of the multidimensional analogues of this statement is the following well-known theorem of L. Zalcman on two radii: for the existence of a nonzero locally summable function 𝑓 : R𝑛 → C with nonzero integrals over all balls of radii 𝑟1 and 𝑟2 in R𝑛 it is necessary and sufficient that 𝑟1/𝑟2 ∈ 𝐸𝑛, where 𝐸𝑛 is the set of all possible ratios of positive zeros of the Bessel function 𝐽𝑛/2. The condition 𝑟1/𝑟2 /∈ 𝐸𝑛is equivalent to the equality 𝒵+(︀̃︀𝜒𝑟1)︀∩ 𝒵+(︀̃︀𝜒𝑟2)︀= ∅, where 𝜒𝑟 is the indicator of the ball 𝐵𝑟 = {𝑥 ∈ R𝑛 : |𝑥| < 𝑟}, ̃︀𝜒𝑟 is the spherical transform (Fourier-Bessel transform) of the indicator 𝜒𝑟, 𝒵+(̃︀𝜒𝑟) is the set of all positive zeros of even entire function ̃︀𝜒𝑟. In terms of convolutions, L. Zalcman’s theorem means that the operator 

$$𝒫𝑓 = (𝑓 * 𝜒𝑟1 , 𝑓 * 𝜒𝑟2 ), 𝑓 ∈ 𝐿^(1,loc) (R𝑛)$$ 

is injective if and only if 𝑟1/𝑟2 /∈ 𝐸𝑛. In this paper, a new formula for the inversion of the operator 𝒫 is found under the condition 𝑟1/𝑟2 /∈ 𝐸𝑛. The result obtained significantly simplifies the previously known procedures for recovering a function 𝑓 from given ball means values 𝑓 *𝜒𝑟1 и 𝑓 * 𝜒𝑟2 . The proofs use the methods of harmonic analysis, as well as the theory of entire and special functions.

About the Authors

Natalia Petrovna Volchkova
Donetsk National Technical University
Ukraine

candidate of physical and mathematical sciences, associate
professor



Vitaliy Vladimirovich Volchkov
Donetsk State University
Ukraine

doctor of physical and mathematical sciences, professor



References

1. Pomp´eiu, D. 1929, “Sur certains syst`emes d’´equations lin´eaires et sur une propri´et´e int´egrale de

2. fonctions de plusieurs variables“, C. R. Acad. Sci. Paris, vol. 188, pp. 1138-1139.

3. Pomp´eiu, D. 1929, “Sur une propri´et´e int´egrale de fonctions de deux variables r´eeles“, Bull. Sci. Acad. Royale Belgique (5), vol. 15, pp. 265-269, https://zbmath.org/JFM 55.0139.01.

4. Chakalov, L. 1944, “Sur un probl`eme de D. Pompeiu“, Annuaire [Godiˇsnik] Univ. Sofia Fac. Phys.-Math., Livre 1, vol. 40, pp. 1-14.

5. Berenstein, C.A.& Struppa, D.C. 1993, “Complex analysis and convolution equations“, Several complex variables. V: Complex analysis in partial differential equations and mathematical physics, vol. 54, pp. 1-108, https://doi.org/10.1007/978-3-642-58011-6-1.

6. Zalcman, L. 1992, “A bibliographic survey of the Pompeiu problem“, Approximation by solutions of partial differential equations, vol. 365, pp. 185-194, https://doi.org/10.1007/978-94-011-2436-2-17.

7. Zalcman, L. 2001, “Supplementary bibliography to “A bibliographic survey of the Pompeiu problem” ”, Contemp. Math. (Radon Transform and Tomography), vol. 278, pp. 69-74, https://doi.org/10.1090/conm/278.

8. Volchkov, V. V. 2003, Integral Geometry and Convolution Equations, Dordrecht: Kluwer Academic Publishers, https://doi.org/10.1007/978-94-010-0023-9.

9. Volchkov, V. V. & Volchkov, Vit. V. 2009, Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group, London: Springer, https://doi.org/10.1007/978-1-84882-533-8.

10. Volchkov, V.V. & Volchkov, Vit. V. 2013, Offbeat Integral Geometry on Symmetric Spaces, Basel: Birkh¨auser, https://doi.org/10.1007/978-3-0348-0572-8.

11. Delsarte, J. 1958, “Note sur une propri´et´e nouvelle des fonctions harmoniques”, C. R. Acad. Sci. Paris S´er. A–B, vol. 246, pp. 1358-1360, https://zbmath.org/0084.09403.

12. Zalcman, L. 1972, “Analyticity and the Pompeiu problem”, Arch. Rat. Anal. Mech., vol. 47, № 3, pp. 237-254, https://doi.org/10.1007/BF00250628.

13. Smith, J. D. 1972, “Harmonic analysis of scalar and vector fields in R𝑛”, Proc. Cambridge Philos. Soc., vol. 72, № 3, pp. 403-416, https://doi.org/10.1017/S0305004100047241.

14. Zalcman, L. 1980, “Offbeat integral geometry”, Amer. Math. Monthly, vol. 87, № 3, pp. 161-175, https://doi.org/10.1080/00029890.1980.11994985.

15. Berenstein, C.A., Taylor, B. A. & Yger, A. 1983, “Sur quelques formules explicites de d´econvolution”, J. Optics (Paris), vol. 14, № 2, pp. 75-82, https://doi.org/10.1088/0150-536X/14/2/003.

16. Berenstein, C. A. & Yger, A. 1983, “Le probl`eme de la d´econvolution”, J. Funct. Anal., vol. 54, № 2, pp. 113-160, https://doi.org/10.1016/0022-1236(83)90051-4.

17. Volchkov, V. V. 1995, “A definitive version of the local two-radii theorem”, Sb. Math., vol. 186, № 6, pp. 783-802, http://dx.doi.org/10.1070/SM1995v186n06ABEH000043.

18. Berenstein, C. A. & Yger, A. 1989, “Analytic Bezout identities”, Adv. Appl. Math., vol. 10, № 1, pp. 51-74, https://doi.org/10.1016/0196-8858(89)90003-1.

19. Berenstein, C. A., Gay, R. & Yger A. 1990, “Inversion of the local Pompeiu transform”, J. Analyse Math., vol. 54, № 1, pp. 259-287, https://doi.org/10.1007/bf02796152.

20. Helgason, S. 2008, Geometric Analysis on Symmetric spaces, Rhode Island: Amer. Math. Soc. Providence, http://books.google.com/books?vid=ISBN978-1-4704-1266-1.

21. Volchkov, V. V. & Volchkov, Vit. V. 2008, “Convolution equations in many-dimensional domains and on the Heisenberg reduced group”, Sb. Math., vol. 199, № 8, pp. 1139-1168, http://dx.doi.org/10.1070/SM2008v199n08ABEH003957.

22. H¨ormander, L. 2003, The Analysis of Linear Partial Differential Operators, vol. I. Springer-Verlag: New York, https://doi.org/10.1007/978-3-642-61497-2.

23. Helgason, S. 1984, Groups and Geometric Analysis. Academic Press: New York, http://books.google.com/books?vid=ISBN978-1-4704-1310-1.

24. Erd´elyi, A., Magnus, W., Oberhettinger, F. & Tricomi, F.G. 1953, Higher Transcendental Functions, vol. II. New York: McGraw-Hill., https://resolver.caltech.edu/CaltechAUTHORS:20140123-104529738.

25. Volchkova, N.P. & Volchkov, Vit. V. 2019, “Deconvolution problem for indicators of segments”, Math. Notes NEFU, vol. 26, № 3, pp. 3-14, https://doi.org/10.25587/SVFU.2019.47.12.001.

26. El Harchaoui, M. 1995, “Inversion de la transformation de Pomp´eiu locale dans les espaces hyperboliques r´eel et complexe (Cas de deux boules)”, J. Anal. Math., vol. 67, № 1, pp. 1-37, https://doi.org/10.1007/BF02787785.

27. Berkani, M., El Harchaoui, M. & Gay, R. 2000, “Inversion de la transformation de Pomp´eiu locale dans l’espace hyperbolique quaternique - Cas des deux boules”, J. Complex Variables, vol. 43, № 1, pp. 29-57, https://doi.org/10.1080/17476930008815300.

28. Volchkov, Vit. V. & Volchkova, N.P. 2001, “Inversion of the local Pompeiu transform on the quaternion hyperbolic space”, Dokl. Math., vol. 64, № 1, pp. 90-93, https://zbmath.org/1041.43005.

29. Volchkov, Vit. V. & Volchkova, N.P. 2004, “Inversion theorems for the local Pompeiu transformation in the quaternion hyperbolic space”, St. Petersburg Math. J., vol. 15, № 5, pp. 753-771, https://doi.org/10.1090/S1061-0022-04-00830-1.

30. Volchkov, Vit. V. 2011, “On functions with given spherical means on symmetric spaces”, J. Math. Sci., vol. 175, № 4, pp. 402-412, https://doi.org/10.1007/s10958-011-0354-2.

31. Volchkov, V. V. & Volchkov, Vit. V. 2011, “Inversion of the local Pompeiu transformation on Riemannian symmetric spaces of rank one”, J. Math. Sci., vol. 179, № 2, pp. 328-343, https://doi.org/10.1007/s10958-011-0597-y.

32. Volchkov, V. V. & Volchkov, Vit. V. 2013, “Spherical means on two-point homogeneous spaces and applications”, Ivz. Math., vol. 77, № 2, pp. 223-252, https://doi.org/10.1070/IM2013v077n02ABEH002634.

33. Rubin, B. 2019, “Reconstruction of functions on the sphere from their integrals over hyperplane sections”, Anal. Math. Phys., vol. 9, № 4, pp. 1627-1664, https://doi.org/10.1007/s13324-019-00290-1.

34. Salman, Y. 2017, “Recovering functions defined on the unit sphere by integration on a special family of sub-spheres”, Anal. Math. Phys., vol. 7, № 2, pp. 165-185, https://doi.org/10.1007/s13324-016-0135-7.

35. Hielscher, R. & Quellmalz, M. 2016, “Reconstructing an function on the sphere from its means along vertical slices”, Inverse Probl. Imaging., vol. 10, № 3, pp. 711-739, https://doi.org/10.3934/ipi.2016018.

36. Vladimirov, V. S. & Zharinov, V. V. 2008, Equations of mathematical physics [Uravneniya matematicheskoy fiziki]. Moskva: FIZMATLIT. ISBN 978-5-9221-0310-7.

37. Levin, B.Ya. 2022, Distribution of roots of entire functions [Raspredeleniye korney tselikh funktsiy] Moskva: URSS. ISBN 978-5-9710-9633-7.

38. Ilyin, V. A., Sadovnichiy, V. A. & Sendov, Bl. Kh. 2013, Mathematical analysis [Matematicheskiy analiz], vol. II. Moskva: Yurayt-Izdat. ISBN 978-5-9710-9916-2742-9.


Review

For citations:


Volchkova N.P., Volchkov V.V. The problem of finding a function by its ball means values. Chebyshevskii Sbornik. 2023;24(2):63-80. (In Russ.) https://doi.org/10.22405/2226-8383-2023-24-2-63-80

Views: 312


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)