On the rate of convergence of Ces`aro means of double Fourier series of functions of generalized bounded variation
https://doi.org/10.22405/2226-8383-2023-24-2-38-62
Abstract
In this paper, the rate of convergence of Ces`aro means of the double Fourier series of a 2𝜋-periodic function in each variable and of generalized bounded variation, is estimated. The result obtained is a generalization of a result of S. M. Mazhar for a single Fourier series and of our earlier result for a function of two variables.
About the Authors
Bera Rameshbhai Karshanbhai BeraIndia
department of mathematics
Bhikha Lila Ghodadra
India
department of mathematics
References
1. Bakhvalov, A. N. 1997, “Divergence everywhere of the Fourier series of continuous functions of
2. several variables”, Sb. Math., 188 (8), 1153–1170.
3. Bakhvalov, A. N. 2002, “𝜆-divergence of the Fourier series of continuous functions of several
4. variables”, Math. Notes, 72 (4), 454–465.
5. Bakhvalov, A. N. 2011, “Summation of Fourier series of functions from multidimensional
6. Waterman classes by Ces`aro methods”, Dokl. Akad. Nauk, 437 (6), 731–733. English transl.
7. in Dokl. Math., 83 (2), 247–249.
8. Bojani´c, R. 1979, “An estimate of the rate of convergence of Fourier series of functions of
9. bounded variation”, Publ. Inst. Math. (beograd), 26 (40), 57–60.
10. Bojani´c, R. & Waterman, D. 1983, “On the rate of convergence of Fourier series of functions
11. of generalized bounded variation”, Akad. Nauka Umjet. Bosne Hercegov. Rad. Odjelj. Prirod.
12. Mat. Nauka, 22, 5–11.
13. Bojani´c, R. & Mazhar, S. M. 1988, “An estimate of the rate of convergence of Ces`aro means
14. of Fourier series of functions of bounded variation”, Mathematical analysis and its applications
15. (Kuwait, 1985), 17–22, KFAS Proc. Ser., 3, Pergamon, Oxford.
16. Bera, R. K. & Ghodadra, B. L. 2022, “On the rate of convergence of double Fourier series of
17. functions of generalized bounded variation”, Acta Sci. Math. (Szeged), 88, 723–737.
18. Bahduh, M. & Nikishin E. M. 1973, “The convergence of the double Fourier series of continuous
19. functions’, Sibirsk. Mat. Zh., 14, 1189–1199; English transl. in Siberian Math. J., 14 (6), 832-
20.
21. D’yachenko, M. I. 1992, “Some problems in the theory of multiple trigonometric series”, Uspekhi
22. Mat. Nauk., 47 (5), 97–162. English transl. in Russian Math. Surveys, 47.
23. Hardy, G. H. 1906, “On double Fourier series”, Quart. J. Math., 35, 53–79.
24. Jordan, C. 1881, “Sur la series de Fourier”, C. R. Acad. Sci. Paris., 92, 228–230.
25. Limaye, B. V. & Ghorpade, S. R. 2010, “A course in multivariable calculus and analysis”,
26. Springer, New York, Dordrecht Heidelberg, London.
27. Mazhar, S. M. 1985, “On the rate of convergence of Ces`aro means of Fourier series of functions
28. of generalized bounded variation”, Chinese J. Math., 13 (3), 195–202.
29. M´oricz, F. 1992, “A quatitiative version of the Dirichlet-Jordan test for double Fourier series”,
30. Journal of Approx. Theory, 71, 344–358.
31. M´oricz, F. 2000, “Approximation by rectangular partial sums of double conjugate Fourier series”,
32. Journal of Approx. Theory, 103, 130–150.
33. Perlman, S. 1979, “Functions of generalized variation”, Polish Acad. Sci. Inst. Math., 105 (3),
34. –211.
35. Zygmund, A. 1959, “Trigonometric series I”, Cambridgee Univ. Press.
36. Zhizhiashvili, L. V. 1962, “Convergence and summability of Fourier series”, Soobˇsˇc. Akad. Nauk
37. Gruzin. SSR, 29, 257–261.
38. Zhizhiashvili, L. V. 1969, “Conjugate functions and trigonometric series”, Izdat. Tbilis. Univ.,
39. Tbilisi. (In Russian)
40. Zhizhiashvili, L. V. 1973, “On some problems of the theory of simple and multiple trigonometric
41. series”, Russian Math. Surveys, 28 (2), 65–119.
Review
For citations:
Bera B., Ghodadra B. On the rate of convergence of Ces`aro means of double Fourier series of functions of generalized bounded variation. Chebyshevskii Sbornik. 2023;24(2):38-62. (In Russ.) https://doi.org/10.22405/2226-8383-2023-24-2-38-62