Stress concentration in a layered plane with an elliptical cutout
https://doi.org/10.22405/2226-8383-2023-24-1-253-263
Abstract
The article deals with the problem of stress concentration in an elastic layered plane with an elliptical cutout. The phenomenon is investigated using the concept of stress concentration tensor. Two levels of concentration are studied: because of the layering and because of the cutout.
Formulas for the stress concentration tensor components are given separately in the case of an infinite layered plane (first level), as well as in the case of a homogeneous anisotropic plane with an elliptical cutout (second level). Stress concentration tensor in a layered plane with It is represented as a product of concentration tensors at the first and second levels. Approximate formulas for the components of the concentration tensor are given. The case of the coincidence of the orientation of the layers and the main axes of the elliptical hole is considered in detail.
In this case, the concentration coefficients at characteristic points are calculated, graphs of the dependence of these coefficients on the ratio of the elastic modulus of the layers are given. In addition, a numerical solution of the problem was carried out using a finite element analysis
package. The obtained analytical and numerical results are consistent with good accuracy.
About the Authors
Vladimir Ivanovich GorbachevRussian Federation
doctor of physical and mathematical sciences, professor
Vsevolod Valeryevich Nekrasov
Russian Federation
References
1. Feodos’ev V. I. Soprotivlenie materialov // M.: Nauka, 1979. 560 p.
2. Kirsch E. G. Die theorie der elastizitat und die bedurfnisse der festigkeitslehre // Zeitschrift
3. des Vereines Deutscher Ingenieure. – 1898. – T. 42. – 797-807 pp.
4. Lekhnickij S. G. Koncentraciya napryazhenij vblizi ellipticheskogo i krugovogo otverstiya v
5. rastyagivaemoj anizotropnoj plastinke // Vestn. inzh. i tekhn. № 5. 1936.
6. Rabotnov YU. N. Vvedenie v mekhaniku razrusheniya // M.: Nauka, 1987.
7. Nejber G. Koncentraciya napryazhenij // M.-L.: OGIZ, 1947.
8. Muskhelishvili N.I. Nekotorye osnovnye zadachi matematicheskoj teorii uprugosti // M.: Nauka,
9. 708 p.
10. Savin G.N. Raspredelenie napryazhenij okolo otverstij // Kiev, Naukova dumka, 1968. 888 p.
11. Savin G.N., Tul’chij V.I. Spravochnik po koncentracii napryazhenij // Kiev, Vishcha shkola,
12. , 412 p.
13. Kosmodamianskij A.S. Napryazhennoe sostoyanie anizotropnyh sred s otverstiyami i polostyami
14. // Kiev - Doneck, Vishcha shkola, 1976, 200 P.
15. Kishkin B.P. Konstrukcionnaya prochnost’ materialov // M.: Izd-vo Mosk. un-ta, 1976, 184 p.
16. Aleksandrov V.M., Smetanin B.I., Sobol’ B.V. Tonkie koncentratory napryazhenij v uprugih
17. telah // M.: Nauka, 1993, 224 p.
18. Mavlyutov R.R. Koncentraciya napryazhenij v elementah konstrukcij // M.: Nauka, 1996, 240
19. p.
20. Lomakin V.A. Teoriya uprugosti neodnorodnyh tel. - M.: Izd-vo MGU, 1976.
21. Gorbachev V.I., Pobedrya B.E. Ob uprugom ravnovesii neodnorodnyh polos // Izvestiya AN
22. SSSR, MTT, № 5, 1979.
23. Gorbachev V.I. Operatory koncentracii napryazhenij i deformacij v uprugih telah // V sb.
24. Raschety na prochnost’. -M.: Mashinostroenie, № 30, 1989.
25. Gorbachev V. I., Gadelev R. R. Koncentraciya napryazhenij v uprugih telah s mnozhestvennymi
26. koncentratorami // Vestnik Moskovskogo universiteta. Seriya 1: Matematika. Mekhanika. —
27. — № 6. — 45-–50 pp.
28. Gorbachev V.I. Variant metoda osredneniya dlya resheniya kraevyh zadach neodnorodnoj
29. uprugosti: dis. doktora fiziko-matematicheskih nauk : 01.02.04 / MGU im. M. V. Lomonosova.
30. - Moskva, 1991.
Review
For citations:
Gorbachev V.I., Nekrasov V.V. Stress concentration in a layered plane with an elliptical cutout. Chebyshevskii Sbornik. 2023;24(1):253-263. (In Russ.) https://doi.org/10.22405/2226-8383-2023-24-1-253-263