Preview

Chebyshevskii Sbornik

Advanced search

On the best polynomial approximation of functions in the Hardy space 𝐻𝑞,𝑅, (1 ⩽ 𝑞 ⩽ ∞, 𝑅 ⩾ 1)

https://doi.org/10.22405/2226-8383-2023-24-1-182-193

Abstract

Exact inequalities are found between the best polynomial approximation of functions analytics in the disk 𝑈𝑅 :={︀𝑧 ∈ C, |𝑧| < 𝑅}︀, 𝑅 ⩾ 1 and the averaged modulus of continuity angular boundary values of the 𝑚th order derivatives. For the class 𝑊(𝑚) 𝑞,𝑅 (𝑚 ∈ Z+, 1 ⩽ 𝑞 ⩽ ∞, 𝑅 ⩾ 1) of functions 𝑓 ∈ 𝐻(𝑚) 𝑞,𝑅 whose 𝑚-order derivatives 𝑓(𝑚) belong to the Hardy space 𝐻𝑞,𝑅 and satisfy the condition ‖𝑓(𝑚)‖𝑞,𝑅 ⩽ 1, the exact values of the upper bounds of the best approximations are calculated. Moreover, for the class 𝑊(𝑚) 𝑞,𝑅 (Φ), consisting of all functions 𝑓 ∈ 𝐻(𝑚) 𝑞,𝑅 , for which any 𝑘 ∈ N, 𝑚 ∈ Z+, 𝑘 > 𝑚 the averaged moduli of continuity of the boundary values of the 𝑚th order derivative 𝑓(𝑚), dominated in the system of points {𝜋/𝑘}𝑘∈N
by the given function Φ, satisfy the condition

$$∫︁(0, 𝜋/𝑘) 𝜔(︀𝑓^(𝑚), 𝑡)︀_(𝑞,𝑅) 𝑑𝑡 ⩽ Φ(𝜋/𝑘),$$

the exact values of the Kolmogorov and Bernstein 𝑛-widths are calculated in the norm of the space 𝐻𝑞 (1 ⩽ 𝑞 ⩽ ∞).
The results obtained generalize some results of L.V.Taikov on classes of analytic functions in a circle of radius 𝑅 ⩾ 1.

About the Authors

Mirgand Shabozovich Shabozov
Tajik National University
Tajikistan

doctor of physical and mathematical sciences, professor



Gulzorkhon Amirshoevich Yusupov
Tajik State S.Aini Pedagogical University
Tajikistan

doctor of physical and mathematical sciences, associate
professor



References

1. Tikhomirov V.M. 1960, “Widths of sets in function spaces and the theory of best approximations”,

2. Ukr. Matem. Journal, vol. 15. no 3. pp. 81–120.

3. Taikov L.V. 1967, “On the best average approximation of some classes of analytic functions”,

4. Math. Notes, vol. 1, no 2, pp. 155–162.

5. Babenko K.I. 1958, “On the best approximations of a class of analytic functions”, Izv. Academy

6. of Sciences of the USSR. Ser. math., vol. 22, no 5, pp. 631–640.

7. Taikov L.V. 1977, “Widths of some classes of analytic functions”, Math. Notes, vol. 22, no 2,

8. pp. 285–295.

9. Ainulloev N., Taikov L.V. 1986, “Best approximation in the sense of Kolmogorov of classes of

10. functions analytic in the unit disc”, Math. Notes, vol. 40, no 3, pp. 699–705.

11. Taikov L.V. 1976, “Some exact inequalities in the theory of approximation of functions”, Analysis

12. Mathematica., no 2, pp. 77–85.

13. Dveyrin M.Z. 1975, “Widths and 𝜀-entropy of classes of functions that are analytic in the unit

14. circle of functions”, Function theory, functional analysis and their applications, no 23, pp. 32–46.

15. Dveyrin M.Z., Chebanencko I.V. 1983, “On polynomial approximation in the weighted Banach

16. spaces of analytic functions”, Mapping theory and approximation of functions. Kiev: Nukova

17. dumka, pp. 62–73.

18. Farkov Yu.A. 1990, “Widths of Hardy classes and Bergman classes on the ball in C𝑛”, Uspekhi

19. Mat. Nauk, vol. 45, no 5(275), pp. 197–198.

20. Farkov Yu.A. 1996, “𝑛-Widths, Faber expansion, and computation of analytic functions”,

21. Journal of complexity., vol. 12, no 1, pp. 58–79.

22. Fisher S.D., Stessin M.I. 1991, “The 𝑛-width of the unit ball of 𝐻𝑞”, Journal of Approx. Theory.,

23. vol. 67, no 3, pp. 347–356.

24. Pinkus A. 1985, “n-Widths in Approximation Theory”, Berlin: Springer-Verlag. Heidelberg. New

25. York. Tokyo, 252 p.

26. Vakarchuk S.B. 1990, “On the widths of certain classes of functions analytic in the unit disc. I”,

27. Ukr. Matem. Journal, vol. 42. no 7. pp. 873–881.

28. Vakarchuk S.B. 1990, “On the widths of certain classes of functions analytic in the unit disc.

29. II”, Ukr. Matem. Journal, vol. 42. no 8. pp. 1019–1026.

30. Vakarchuk S.B. 2002, “Exact values of the widths of classes of functions analytic in the circle

31. and the best linear methods of approximation”, Math. Notes, vol. 72, no 5, pp. 665–669.

32. Vakarchuk S.B. 2004, “On some extremal problems in the theory of approximations in the

33. complex plane”, Ukr. Matem. Journal, vol. 56. no 9. pp. 1155–1171.

34. Shabozov M.Sh., Shabozov O.Sh. 2000, “Widths of some classes of analytic functions in the

35. Hardy space 𝐻2”, Math. Notes, vol. 68, no 5, pp. 796–800.

36. Shabozov M.Sh., Yusupov G.A. 2002, “Best approximation and values of widths of some classes

37. of analytic functions”, Dokl. RAN, vol. 383, no 2, pp. 171–174.

38. Vakarchuk S.B., Shabozov M.Sh. “2010, “The widths of classes of analytic functions in a disc”,

39. Mat. Sbornik, vol. 201, no 8, pp. 3–22.

40. Sigmund A. 1965, “Trigonometric series”, Moscow: Mir, vol. 1, 615 p.

41. Tikhomirov V. M. 1976, “Some problems of theory of approximation”, Moscow: MSU, 304 p.

42. Taikov L.V. 1977, “Best approximations of differentiable functions in the metric of the space

43. 𝐿2”, Math. Notes, vol. 22, no 4, pp. 535–542.


Review

For citations:


Shabozov M.Sh., Yusupov G.A. On the best polynomial approximation of functions in the Hardy space 𝐻𝑞,𝑅, (1 ⩽ 𝑞 ⩽ ∞, 𝑅 ⩾ 1). Chebyshevskii Sbornik. 2023;24(1):182-193. (In Russ.) https://doi.org/10.22405/2226-8383-2023-24-1-182-193

Views: 419


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)