On symmetries of 3-dimensional algebraic continued fractions
https://doi.org/10.22405/2226-8383-2023-24-1-139-181
Abstract
In this paper we prove in detail a criterion for an algebraic continued fraction to have a proper palindromic symmetry in dimension 4. We also present a new proof of the criterion for an algebraic continued fraction to have a proper cyclic palindromic symmetry in dimension 4.
As a multidimensional generalization of continued fractions, we consider Klein polyhedra.
About the Author
Ibragim Aslanovich TlyustangelovRussian Federation
References
1. Klein, F. 1895, “Uber eine geometrische Auffassung der gewohnlichen Kettenbruchentwichlung”,
2. Nachr. Ges. Wiss., Gottingen, vol. 1895, no. 3, pp. 357-359.
3. Korkina, E. I. 1995, “Two-dimensional continued fractions. The simplest examples”, Proc. Steklov
4. Inst. Math., vol. 209, pp. 124-144.
5. German, O. N. 2005, “Sails and norm minima of lattices”, Sbornik: Mathematics, vol. 196, no.
6. , pp. 31-60.
7. German, O. N. 2007, “Klein polyhedra and lattices with positive norm minima”, Journal de
8. Th´eorie des Nombres de Bordeaux, vol. 19, pp. 157-190.
9. Karpenkov, O. N. 2013, “Geometry of Continued Fractions”, Algorithms and Computation in
10. Mathematics, Springer-Verlag, vol. 26.
11. German, O. N., Tlyustangelov, I. A. 2021, “Symmetries of a two-dimensional continued fraction”,
12. Izv. Math, vol. 85, no. 4, pp. 666-680.
13. German, O. N., Tlyustangelov, I. A. 2016, “Palindromes and periodic continued fractions”, Mosc.
14. J. Comb. Number Theory, vol. 6, no. 2-3, pp. 233-252.
15. Borevich, Z. I., Shafarevich, I. R. 1966, “Number theory”, Pure Appl. Math., Academic Press,
16. New York–London, vol. 20.
17. Galois, ´E. 1828, “Demonstration d’un theoreme sur les fractions continues periodiques”, Ann.
18. Math. Pures Appl. [Ann. Gergonne], vol. 19, pp. 294-301.
19. Legendre, A. M. 1830, “Th´eorie des nombres. (3 ed.)”, Firmin Didot Fr´eres, Libraires, Paris.
20. Perron, O. 1954, “Die Lehre von den Kettenbr¨uchen. Band I. (3 Aufl.)”, B. G. Teubner
21. Verlagsgesellschaft, Stuttgart.
22. Kraitchik, M. 1926, “Th´eorie des nombres. Tome II”, Analyse ind´etermin´ee du second degr´e et
23. factorisation, Gauthier-Villars, Paris.
24. Tlyustangelov, I. A. 2022, “Proper symmetries of 3-dimensional continued fractions”, Doklady
25. Mathematics, vol. 506, no. 1, pp. 73-82.
26. Tlyustangelov, I. A. 2022, “Proper cyclic symmetries of multidimensional continued fractions”,
27. Sbornik: Mathematics, vol. 213, no. 9, pp. 138-166.
Review
For citations:
Tlyustangelov I.A. On symmetries of 3-dimensional algebraic continued fractions. Chebyshevskii Sbornik. 2023;24(1):139-181. (In Russ.) https://doi.org/10.22405/2226-8383-2023-24-1-139-181