The left-invariant Sasakian structure on the group model of the real extension of the Lobachevsky plane
https://doi.org/10.22405/2226-8383-2023-24-1-114-126
Abstract
It has been proved that there is left-invariant contact metric structure (𝜂, 𝜉, 𝜙, 𝑔) whose Riemannian metric is different from the metric of the direct product on the group model of the real extension of the Lobachevsky plane H^2 × R. The restriction of the metric 𝑔 to the contact distribution is the metric of the Lobachevsky plane and, together with a completely nonholonomic contact distribution, defines a sub-Riemann structure on H^2 × R.
The found almost contact metric structure is normal and therefore Sasakian. The lie group of automorphisms of this structure has maximum dimension. The basis vector fields of its Lie algebra are found. In addition to the Levi-Civita connection ∇, we consider a contact metric
connection ˜∇ with skew-symmetric torsion, which, like the Levi-Civita connection, is also invariant under the automorphism group. The structure tensors 𝜂, 𝜉, 𝜙, 𝑔, the torsion tensor˜ 𝑆 and the curvature tensor ˜𝑅
of a given connection are covariantly constant. The curvature tensor ˜𝑅 of the connection ˜∇ has the necessary properties to introduce the concept of sectional curvature. It is established that the sectional curvature ˜𝑘 belongs to the numerical segment [−2, 0]. Using the field of orthonormal frames adapted to the contact distribution, the coefficients of the truncated connection and the differential equations of its geodesics are found. It has been proved that the contact geodesics of the connections ∇ and ˜∇ coincide with the geodesics of truncated connection, that is, both connections are compatible with the contact distribution.
This means that there is only one contact geodesic through each point in each contact direction.
About the Authors
Vladimir Ivanovich Pan’zhenskiiRussian Federation
candidate of physical and mathematical sciences, professor
Anastasia Olegovna Rastrepina
Russian Federation
undergraduate student
References
1. Galaev, S. V. 2015, “Almost contact metric spaces with 𝑁-connection”, Izvestiya Saratovskogo
2. universiteta. Novaya seriya. Seriya: Matematika. Mexanika. Informatika (Izvestiya of Saratov
3. university. Mathematics. Mechanics. Informatics), vol. 15, no. 3, pp. 258–264. doi:
4. 18500/1816-9791-2015-15-3-258-264.
5. Galaev, S. V. 2021, “∇𝑁-Einstein almost contact metric manifolds”, Vestnik Tomskogo
6. gosudarstvennogo universiteta. Matematika i mexanika (Tomsk State University Journal of
7. Mathematics and Mechanics), no. 70, pp. 5–15. doi: 10.17223/19988621/70/1.
8. Banaru, M. B. 2014, “On almost contact metric 1-hypersurfaces in Kahlerian manifolds”,
9. Siberian Mathematical Journal, vol. 55, no. 4, pp. 585–588. doi: 10.1134/S0037446614040016.
10. Banaru, M. B. 2018, “The almost contact metric hypersurfaces with small type numbers
11. in 𝑊4-manifolds”, Moscow University Mathematics Bulletin, vol. 73, no. 1, pp. 38–40. doi:
12. 3103/S0027132218010072.
13. Smolentsev, N. K. 2019, “Left-invariant para-sasakian structures on Lie groups”, Vestnik
14. Tomskogo gosudarstvennogo universiteta. Matematika i mexanika (Tomsk State University
15. Journal of Mathematics and Mechanics), no. 62, pp. 27v37. doi: 10.17223/19988621/62/3.
16. Smolentsev, N. K. & Shagabudinova, I. Y. 2021, “On Parasasakian structures on fivedimensional
17. Lie algebras”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i
18. mexanika (Tomsk State University Journal of Mathematics and Mechanics), no. 69, pp. 37–52.
19. doi: 10.17223/19988621/69/4.
20. Pan’zhenskii, V. I. & Rastrepina, A. O. 2020, “The left-invariant contact metric structure on
21. the Sol manifold”, Uchenye zapiski Kazanskogo universiteta. Seriya Fiziko-matematicheskie
22. nauki, vol. 162, no. 1, pp. 77–90. doi: 10.26907/2541-7746.2020.1.77-90.
23. Pan’zhenskii, V. I. & Rastrepina, A. O. 2021, “Contact and almost contact structures on the
24. real extension of the Lobachevsky plane”, Uchenye zapiski Kazanskogo universiteta. Seriya
25. Fiziko-matematicheskie nauki, vol. 163, no. 3–4, pp. 291–303. doi: 10.26907/2541-7746.2021.3-
26. 291-303.
27. Pan’zhenskii, V. I. & Rastrepina, A. O. 2022, “Left-invariant para-sasakian structure on the
28. Heisenberg group”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mexanika
29. (Tomsk State University Journal of Mathematics and Mechanics), no. 75, pp. 38–51. doi:
30. 17223/19988621/75/4.
31. Calvaruso, G. 2013, “Three-dimensional homogeneous almost contact metric structures”,
32. Journal of Geometry and Physics, vol. 69, pp. 60–73. doi: 10.1016/j.geomphys.2013.03.001.
33. Calvaruso, G. & Mart´ın-Molina, V. 2015, “Paracontact metric structures on the unit tangent
34. sphere bundle”, Annali di Matematica Pura ed Applicata (1923-), vol. 194, pp. 1359–1380. doi:
35. 1007/s10231-014-0424-4.
36. Calvaruso, G. & Perrone, A. 2014, “Left-invariant hypercontact structures on three-dimensional
37. Lie groups”, Periodica Mathematica Hungarica, vol. 69, pp. 97–108. doi: 10.1007/s10998-014-
38. -z.
39. Calvaruso, G. & Perrone, A. 2016, “Five-dimensional paracontact Lie algebras”, Differential
40. Geometry and Its Applications, vol. 45, pp. 115–129. doi: 10.1016/j.difgeo.2016.01.001.
41. Diatta, A. 2008, “Left invariant contact structures on Lie groups”, Differential Geometry and
42. Its Applications, vol. 26, no. 5, pp. 544–552. doi: 10.1016/j.difgeo.2008.04.001.
43. Slavolyubova, Ya. V. 2014, “Contact metric structures on odd-dimensional unit spheres”,
44. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mexanika (Tomsk State
45. University Journal of Mathematics and Mechanics), no. 6 (32), pp. 46–54.
46. Panzhenskii, V. I. & Klimova, T. R. 2018, “The contact metric connection on the Heisenberg
47. group”, Russian Mathematics, vol. 62, no. 11, pp. 45–52. doi: 10.3103/S1066369X18110051.
48. Blair, D. E. 1976, “Contact manifolds in Riemannian geometry. Lecture notes in mathematics
49. (Vol. 509)”, Berlin; Heidelberg; New York: Springer-Verlag, 148 p. doi: 10.1007/BFb0079307.
50. Tanno, S. 1969, “The automorphism groups of almost contact riemannian manifolds”, Tohoku
51. Mathematical Journal, vol. 21, no. 1, pp. 21–38. doi: 10.2748/tmj/1178243031.
52. Vershik, A. M. & Faddeev, L. D. 1975, “Lagranzheva mexanika v invariantnom izlozhenii
53. [Lagrangian mechanics in invariant form]”, Problemy teoreticheskoy fiziki, Leningrad: Izd. LGU,
54. pp. 129–141.
55. Vershik, A. M. & Gershkovich, V. Ya. 1987, “Nonholonomic dynamical systems. Geometry
56. of distributions and variational problems”, Dinamicheskie sistemy – 7. Itogi nauki i texniki.
57. Seriya Sovremennye problemy matematiki. Fundamentalnye napravleniya, vol. 16, pp. 5–85.
58. Gromoll, D., Klingenberg, W. & Meyer W. 1971, “Rimanova geometriya v tselom [Riemannian
59. geometry as a whole]”, Moscow: Mir, 343 p.
Review
For citations:
Pan’zhenskii V.I., Rastrepina A.O. The left-invariant Sasakian structure on the group model of the real extension of the Lobachevsky plane. Chebyshevskii Sbornik. 2023;24(1):114-126. (In Russ.) https://doi.org/10.22405/2226-8383-2023-24-1-114-126