Preview

Chebyshevskii Sbornik

Advanced search

The left-invariant Sasakian structure on the group model of the real extension of the Lobachevsky plane

https://doi.org/10.22405/2226-8383-2023-24-1-114-126

Abstract

It has been proved that there is left-invariant contact metric structure (𝜂, 𝜉, 𝜙, 𝑔) whose Riemannian metric is different from the metric of the direct product on the group model of the real extension of the Lobachevsky plane H^2 × R. The restriction of the metric 𝑔 to the contact distribution is the metric of the Lobachevsky plane and, together with a completely nonholonomic contact distribution, defines a sub-Riemann structure on H^2 × R.
The found almost contact metric structure is normal and therefore Sasakian. The lie group of automorphisms of this structure has maximum dimension. The basis vector fields of its Lie algebra are found. In addition to the Levi-Civita connection ∇, we consider a contact metric
connection ˜∇ with skew-symmetric torsion, which, like the Levi-Civita connection, is also invariant under the automorphism group. The structure tensors 𝜂, 𝜉, 𝜙, 𝑔, the torsion tensor˜ 𝑆 and the curvature tensor ˜𝑅
of a given connection are covariantly constant. The curvature tensor ˜𝑅 of the connection ˜∇ has the necessary properties to introduce the concept of sectional curvature. It is established that the sectional curvature ˜𝑘 belongs to the numerical segment [−2, 0]. Using the field of orthonormal frames adapted to the contact distribution, the coefficients of the truncated connection and the differential equations of its geodesics are found. It has been proved that the contact geodesics of the connections ∇ and ˜∇ coincide with the geodesics of truncated connection, that is, both connections are compatible with the contact distribution.
This means that there is only one contact geodesic through each point in each contact direction.

About the Authors

Vladimir Ivanovich Pan’zhenskii
Penza State University
Russian Federation

candidate of physical and mathematical sciences, professor



Anastasia Olegovna Rastrepina
Penza State University
Russian Federation

undergraduate student



References

1. Galaev, S. V. 2015, “Almost contact metric spaces with 𝑁-connection”, Izvestiya Saratovskogo

2. universiteta. Novaya seriya. Seriya: Matematika. Mexanika. Informatika (Izvestiya of Saratov

3. university. Mathematics. Mechanics. Informatics), vol. 15, no. 3, pp. 258–264. doi:

4. 18500/1816-9791-2015-15-3-258-264.

5. Galaev, S. V. 2021, “∇𝑁-Einstein almost contact metric manifolds”, Vestnik Tomskogo

6. gosudarstvennogo universiteta. Matematika i mexanika (Tomsk State University Journal of

7. Mathematics and Mechanics), no. 70, pp. 5–15. doi: 10.17223/19988621/70/1.

8. Banaru, M. B. 2014, “On almost contact metric 1-hypersurfaces in Kahlerian manifolds”,

9. Siberian Mathematical Journal, vol. 55, no. 4, pp. 585–588. doi: 10.1134/S0037446614040016.

10. Banaru, M. B. 2018, “The almost contact metric hypersurfaces with small type numbers

11. in 𝑊4-manifolds”, Moscow University Mathematics Bulletin, vol. 73, no. 1, pp. 38–40. doi:

12. 3103/S0027132218010072.

13. Smolentsev, N. K. 2019, “Left-invariant para-sasakian structures on Lie groups”, Vestnik

14. Tomskogo gosudarstvennogo universiteta. Matematika i mexanika (Tomsk State University

15. Journal of Mathematics and Mechanics), no. 62, pp. 27v37. doi: 10.17223/19988621/62/3.

16. Smolentsev, N. K. & Shagabudinova, I. Y. 2021, “On Parasasakian structures on fivedimensional

17. Lie algebras”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i

18. mexanika (Tomsk State University Journal of Mathematics and Mechanics), no. 69, pp. 37–52.

19. doi: 10.17223/19988621/69/4.

20. Pan’zhenskii, V. I. & Rastrepina, A. O. 2020, “The left-invariant contact metric structure on

21. the Sol manifold”, Uchenye zapiski Kazanskogo universiteta. Seriya Fiziko-matematicheskie

22. nauki, vol. 162, no. 1, pp. 77–90. doi: 10.26907/2541-7746.2020.1.77-90.

23. Pan’zhenskii, V. I. & Rastrepina, A. O. 2021, “Contact and almost contact structures on the

24. real extension of the Lobachevsky plane”, Uchenye zapiski Kazanskogo universiteta. Seriya

25. Fiziko-matematicheskie nauki, vol. 163, no. 3–4, pp. 291–303. doi: 10.26907/2541-7746.2021.3-

26. 291-303.

27. Pan’zhenskii, V. I. & Rastrepina, A. O. 2022, “Left-invariant para-sasakian structure on the

28. Heisenberg group”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mexanika

29. (Tomsk State University Journal of Mathematics and Mechanics), no. 75, pp. 38–51. doi:

30. 17223/19988621/75/4.

31. Calvaruso, G. 2013, “Three-dimensional homogeneous almost contact metric structures”,

32. Journal of Geometry and Physics, vol. 69, pp. 60–73. doi: 10.1016/j.geomphys.2013.03.001.

33. Calvaruso, G. & Mart´ın-Molina, V. 2015, “Paracontact metric structures on the unit tangent

34. sphere bundle”, Annali di Matematica Pura ed Applicata (1923-), vol. 194, pp. 1359–1380. doi:

35. 1007/s10231-014-0424-4.

36. Calvaruso, G. & Perrone, A. 2014, “Left-invariant hypercontact structures on three-dimensional

37. Lie groups”, Periodica Mathematica Hungarica, vol. 69, pp. 97–108. doi: 10.1007/s10998-014-

38. -z.

39. Calvaruso, G. & Perrone, A. 2016, “Five-dimensional paracontact Lie algebras”, Differential

40. Geometry and Its Applications, vol. 45, pp. 115–129. doi: 10.1016/j.difgeo.2016.01.001.

41. Diatta, A. 2008, “Left invariant contact structures on Lie groups”, Differential Geometry and

42. Its Applications, vol. 26, no. 5, pp. 544–552. doi: 10.1016/j.difgeo.2008.04.001.

43. Slavolyubova, Ya. V. 2014, “Contact metric structures on odd-dimensional unit spheres”,

44. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mexanika (Tomsk State

45. University Journal of Mathematics and Mechanics), no. 6 (32), pp. 46–54.

46. Panzhenskii, V. I. & Klimova, T. R. 2018, “The contact metric connection on the Heisenberg

47. group”, Russian Mathematics, vol. 62, no. 11, pp. 45–52. doi: 10.3103/S1066369X18110051.

48. Blair, D. E. 1976, “Contact manifolds in Riemannian geometry. Lecture notes in mathematics

49. (Vol. 509)”, Berlin; Heidelberg; New York: Springer-Verlag, 148 p. doi: 10.1007/BFb0079307.

50. Tanno, S. 1969, “The automorphism groups of almost contact riemannian manifolds”, Tohoku

51. Mathematical Journal, vol. 21, no. 1, pp. 21–38. doi: 10.2748/tmj/1178243031.

52. Vershik, A. M. & Faddeev, L. D. 1975, “Lagranzheva mexanika v invariantnom izlozhenii

53. [Lagrangian mechanics in invariant form]”, Problemy teoreticheskoy fiziki, Leningrad: Izd. LGU,

54. pp. 129–141.

55. Vershik, A. M. & Gershkovich, V. Ya. 1987, “Nonholonomic dynamical systems. Geometry

56. of distributions and variational problems”, Dinamicheskie sistemy – 7. Itogi nauki i texniki.

57. Seriya Sovremennye problemy matematiki. Fundamentalnye napravleniya, vol. 16, pp. 5–85.

58. Gromoll, D., Klingenberg, W. & Meyer W. 1971, “Rimanova geometriya v tselom [Riemannian

59. geometry as a whole]”, Moscow: Mir, 343 p.


Review

For citations:


Pan’zhenskii V.I., Rastrepina A.O. The left-invariant Sasakian structure on the group model of the real extension of the Lobachevsky plane. Chebyshevskii Sbornik. 2023;24(1):114-126. (In Russ.) https://doi.org/10.22405/2226-8383-2023-24-1-114-126

Views: 350


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)