Preview

Chebyshevskii Sbornik

Advanced search

First Appelrot class of pseudo-Euclidean Kovalevskaya system

https://doi.org/10.22405/2226-8383-2023-24-1-69-88

Abstract

In paper, properties of an integrable pseudo-Euclidean analogue of the Kovalevskaya top are studied for the zero level of the additional first Kovalevskaya integral. The class of motions of a classical top under the same condition is also called the first Appelrot class or the Delaunay class. We describe the homeomorphism class of each fiber, the fiberwise homeomorphism classes of the foliation in a neighborhood of each bifurcation fiber (i.e. analogues of Fomenko 2-atoms) and on the two-dimensional intersection of the level 𝐾 = 0 and each nondegenerate symplectic leaf of the Poisson bracket. It is proved that non-compact one-dimensional Liouville fibers, noncritical
bifurcations of compact and non-compact fibers appear in this integrable system. The non-degeneracy problem (in the Bott sense) for all points of the 𝐾 = 0 level is also studied, and it is proved that the critical sets of the of classical Kovalevskaya top and its pseudo-Euclidean analogue coincides.

About the Author

Vladislav Alexandrovich Kibkalo
Lomonosov Moscow State University; Moscow Center for Fundamental and Applied Mathematics
Russian Federation

candidate of physical and mathematical sciences



References

1. Borisov, A. V. & Mamaev, I. S. 2004, Classical dynamics in non-Euclidean spaces — Moscow,

2. Izhevsk: R.Ch.D. (in Russian)

3. Borisov, A. V. & Mamaev, I. S. 2016, “Rigid body dynamics in non-Euclidean spaces”, Rus. J.

4. of Math. Phys., vol. 23, no. 4, pp. 431-454.

5. Kowalewski, S. 1889, “Sur le probl´eme de la rotation d’un corps solide autour d’un point fixe”,

6. Acta Mathematica, vol. 12, pp. 177-232.

7. Sokolov, S.V˙ . 2018, “The integrable case of Kovalevskaya in a non-Euclidean spase: separation

8. of variables”, Trydi MAI., vol. 100, pp. 1-13.

9. Appelrot, G. G. 1940, “Ne vpolne simmetrichnye tyazhelye giroskopy”, Dvizhenie tverdogo tela

10. vokrug nepodvizhnoi tochki, — Izd-vo AN SSSR, M.–L., pp. 61-157.

11. Delaunay, N. B. 1892, “Zur Frage von der geometrischen Deutung der Integrale von S.

12. Kowalevski bei der Bewegung eines starren K¨𝑜rpers um einen festen Punkte”, Sb. Math., vol.

13. , no. 2, pp. 346-351.

14. Smale, S. 1970, “Topology and Mechanics: 1”, Invent. Math., vol. 10, no. 4, pp. 305-331.

15. Kharlamov, M.P. 1988, Topological analysis of integrable problems of rigid body dynamics, LSU

16. Publ., Leningrad, 200 pp.

17. Fomenko, A. T. 1987, “The topology of surfaces of constant energy in integrable Hamiltonian

18. systems, and obstructions to integrability”, Math. USSR-Izv., vol. 29, no. 3, pp. 629-658.

19. Fomenko, A. T. & Zieschang, H. 1991, “A topological invariant and a criterion for the equivalence

20. of integrable Hamiltonian systems with two degrees of freedom”, Math. USSR-Izv., vol. 36, no.

21. , pp. 567-596.

22. Bolsinov, A. V., Matveev, S.V. & Fomenko, A. T. 1990, “Topological classification of integrable

23. Hamiltonian systems with two degrees of freedom. List of systems of small complexity”, Russian

24. Math. Surveys, vol. 45, no. 2, pp. 59-94.

25. Bolsinov, A. V. & Fomenko, A. T. 2004, Integrable Hamiltonian systems: geometry, topology,

26. classification, Chapman & Hall /CRC, Boca Raton, London, N.Y., Washington.

27. Oshemkov, A. A. 1991, “Fomenko invariants for the main integrable cases of rigid body motion

28. equations”, AMS, vol. 4. pp. 67-146.

29. Bolsinov, A. T., Richter, P. & Fomenko, A. T. 2000, “The method of loop molecules and the

30. topology of the Kovalevskaya top”, Sb. Math., vol. 191, no. 2, pp. 151-188.

31. Morozov, P. V. 2002, “The Liouville classification of integrable systems of the Clebsch case”, Sb.

32. Math., vol. 193, no. 10, pp. 1507-1533.

33. Morozov, P. V. 2004, “Topology of Liouville foliations in the Steklov and the Sokolov integrable

34. cases of Kirchhoff’s equations”, Sb. Math., vol. 195, no. 3, pp. 369-412.

35. Logacheva, N. S. 2012, “Classification of nondegenerate equilibria and degenerate 1-dimensional

36. orbits of the Kovalevskaya-Yehia integrable system”, Sb. Math., vol. 203, no. 1, pp. 28-59.

37. Maslov V.P. & Shafarevich, A. I. 2017, “Fomenko invariants in the asymptotic theory of the

38. Navier–Stokes equations”, J. Math. Sci., vol. 225, no. 4, pp. 666-680.

39. Ramodanov S. M. & Sokolov, S. V. 2021, “Dynamics of a Circular Cylinder and Two Point

40. Vortices in a Perfect Fluid”, Regul. Chaotic Dyn., vol. 26, no. 6, pp. 675-691.

41. Palshin, G.P. 2022, “On noncompact bifurcation in one generalized model of vortex dynamics”,

42. Theor. Math. Phys., vol. 212, no. 1, pp. 972-983. https://doi.org/10.1134/S0040577922070078

43. Haghighatdoost, G. & Oshemkov, A. A. 2009, “The topology of Liouville foliation for the Sokolov

44. integrable case on the Lie algebra so(4)”, Sb. Math., vol. 200, no. 6, pp. 899-921

45. Novikov, D. V. 2014, “Топологические особенности интегрируемого случая Соколова на ал-

46. гебре Ли so(3,1)”, Sb. Math., vol. 205, no. 8, pp. 1107-1132.

47. Kozlov, I. K. 2014, “The topology of the Liouville foliation for the Kovalevskaya integrable case

48. on the Lie algebra so(4)”, Sbornik: Mathematics, vol. 205, no. 4, pp. 532-572.

49. Kibkalo, V. A. 2018, “Topological analysis of the Liouville foliation for the Kovalevskaya

50. integrable case on the Lie algebra so(4)”, Lobachevskii J. Math., vol. 39, no. 9, pp. 1396-1399.

51. Kibkalo, V. A. 2019, “Topological classification of Liouville foliations for the Kovalevskaya

52. integrable case on the Lie algebra so(4)”, Sb. Math., vol. 210, no. 5, pp. 625-662.

53. Kibkalo, V. A. 2020, “Topological classification of Liouville foliations for the Kovalevskaya

54. integrable case on the Lie algebra so(3, 1)”, Topol. and Appl., vol. 275, no. 107028.

55. Komarov, I. V. 1981, “Kowalewski basis for the hydrogen atom”, Theoret. and Math. Phys., vol.

56. , no. 1, pp. 320-324. https://doi.org/10.1007/BF01017022

57. Fedoseev, D. A. & Fomenko, A. T. 2020, “Noncompact Bifurcations of Integrable Dynamic

58. Systems”, J. Math. Sc., vol. 248, pp. 810-827.

59. Kudryavtseva, E. A. 2012, “An analogue of the Liouville theorem for integrable Hamiltonian

60. systems with incomplete flows”, Doklady Mathematics, vol. 86, no. 1, pp. 527-529.

61. Novikov, D. V. 2011, “Topological features of the Sokolov integrable case on the Lie algebra

62. e(3)”, Sb. Math., vol. 202, no. 5, pp. 749-781.

63. Nikolaenko, S. S. 2020, “Topological classification of Hamiltonian systems on two-dimensional

64. noncompact manifolds”, Sb. Math., vol. 211, no. 8, pp. 1127-1158.

65. Nikolaenko, S. S. 2021, “Topological classification of non-compact 3-atoms with a circle action”,

66. Chebyshevskii Sb., vol. 22, no. 5, pp. 185-197.

67. Nikolaenko, S. S. 2017, “Topological classification of the Goryachev integrable systems in the

68. rigid body dynamics: non-compact case”, Lobachevskii J. Math., vol. 38, pp. 1050-1060.

69. Vedyushkina (Fokicheva), V. V. & Fomenko, A. T. 2017, “Integrable topological billiards and

70. equivalent dynamical systems”, Izv. Math., vol. 81, no. 4, pp. 688-733.

71. Vedyushkina, V. V. & Skvortsov, A. I. 2022, “Topology of integrable billiard in an ellipse on the

72. Minkowski plane with the Hooke potential”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., vol. 77,

73. no. 1, pp. 8-19.

74. Kibkalo, V. A. 2020, “Noncompactness property of fibers and singularities of non-Euclidean

75. Kovalevskaya system on pencil of Lie algebras”, Moscow Univ. Math. Bull., vol. 75, no. 6, pp.

76. -267.

77. Kharlamov, M.P. 2010, “Topological analysis and Boolean functions. I. Methods and application

78. to classical systems”, Nelin. Dinam., vol. 6, no. 4. pp. 769-805.


Review

For citations:


Kibkalo V.A. First Appelrot class of pseudo-Euclidean Kovalevskaya system. Chebyshevskii Sbornik. 2023;24(1):69-88. (In Russ.) https://doi.org/10.22405/2226-8383-2023-24-1-69-88

Views: 352


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)