Preview

Chebyshevskii Sbornik

Advanced search

Regularized asymptotics of the solution of a singularly perturbed mixed problem on the semiaxis for an equation of Schrodinger type in the presence of a strong turning point for the limit operator

https://doi.org/10.22405/2226-8383-2023-24-1-50-68

Abstract

In the proposed work we construct a regularized asymptotics for the solution of a singularly perturbed inhomogeneous mixed problem on the half-axis arising from a semiclassical transition in the Schrodinger equation in the coordinate representation. The potential energy profile chosen in the paper leads to a singularity in the spectrum of the limit operator in the form strong the turning point. Based on the ideas of asymptotic integration of problems with an unstable spectrum by S.A. Lomov and A.G. Eliseev, it is indicated how and from what considerations regularizing functions and additional regularizing operators should be introduced, the formalism of the regularization method for the problem posed is described in detail, and justification of this algorithm and an asymptotic solution of any order with respect to a small parameter is constructed.

About the Authors

Alexander Georgievich Eliseev
National Research University “Moscow Power Engineering Institute”
Russian Federation

doctor of physical and mathematical science, associate professor



Pavel Vladimirovich Kirichenko
National Research University “Moscow Power Engineering Institute”
Russian Federation


References

1. Bobodzhanov A. A., Safonov V. F. 2012, “Course of higher mathematics. Singularly perturbed

2. equations and the regularization method: a study guide” [Kurs vysshey matematiki. Singulyarno

3. vozmushchennyye uravneniya i metod regulyarizatsii: uchebnoye posobiye], Moscow: National

4. Research University MPEI. (In Russ.)

5. Lomov S. A., Lomov I. S. 2011, “Fundamentals of the mathematical theory of the boundary

6. layer” [Osnovy matematicheskoy teorii pogranichnogo sloya], Moscow: Moscow State University.

7. (In Russ.)

8. Lomov S. A. 1992, “Introduction to the General Theory of Singular Perturbations (Translations

9. of Mathematical Monographs)”, New York: Amer. Math. Soc.

10. Lomov S. A. 1962, “Asymptotic behavior of solutions to second-order ordinary differential

11. equations containing a small parameter” [Asimptoticheskoye povedeniye resheniy obyknovennykh

12. differentsial’nykh uravneniy vtorogo poryadka, soderzhashchikh malyy parametr],

13. Moscow: Trudi MPEI, issue 42, P. 99–144. (In Russ.)

14. Lomov S. A. 1963, “Power series boundary layer in problems involving a small parameter”, Sov.

15. Math. Dokl., issue 4, P. 125–129.

16. Lomov S. A. 1964, “On the Lighthill Model Equation” [O model’nom uravnenii Laytkhilla], Sb.

17. nauch. trudov MO SSSR, No 54, P. 74–83. (In Russ.)

18. Lomov S. A. 1965, “Regularization of singular perturbations” [Regulyarizatsiya singulyarnykh

19. vozmushcheniy], Moscow: Dokl. nauchno-tekhn. konf. MPEI, sektsiya matem., P. 129–133. (In

20. Russ.)

21. Lomov S. A., Safonov V. F. 1984, “Regularizations and asymptotic solutions for singularly

22. perturbed problems with point singularities of the spectrum of the limit operator” [Regulyarizatsii

23. i asimptoticheskiye resheniya dlya singulyarno vozmushchennykh zadach s tochechnymi

24. osobennostyami spektra predel’nogo operatora], Ukr. mat. zhurn., Vol. 36, No 2, P. 172–180.

25. (In Russ.)

26. Eliseev A. G., Lomov S. A. 1988, “The theory of singular perturbations in the case of spectral

27. singularities of a limit operator”, Math. USSR-Sb., Vol. 59, No 2, P. 541–555.

28. Bobodzhanov A. A., Safonov V. F. 2018, “Regularized asymptotics of solutions to integrodifferential

29. partial differential equations with rapidly varying kernels”, Ufa Math. J., Vol. 10,

30. No 2, P. 3–13.

31. Eliseev A. G., Ratnikova T. A. 2019, “Singularly perturbed cauchy problem in the presence

32. of the rational simple pivot point of the limit operator”, Differencialnie Uravnenia i Protsesy

33. Upravlenia, No 3, P. 63–73.

34. Eliseev A. G. 2020, “Regularized solution of a singularly perturbed cauchy problem in the

35. presence of irrational simple turning point”, Differencialnie Uravnenia i Protsesy Upravlenia,

36. No 2, P. 15–32.

37. Eliseev P. V. 2020, “A singularly perturbed cauchy problem for a parabolic equation in the

38. presence of the “weak” turning point of the limit operator”, Mathematical Notes of NEFU,

39. Vol.57, No 3, P. 3–15.

40. Eliseev A. G., Eliseev P. V. 2020, “Regularized asymptotics of solution a singularly perturbed

41. Cauchy problem in the presence of the «weak» turning point at the limit operator”,

42. Differencialnie Uravnenia i Protsesy Upravlenia, No 1, P. 55–67.

43. Eliseev A. G., Eliseev P. V. 2022, “Singularly Perturbed Cauchy Problem in Which the

44. Limit Operator has Multiple Spectrum and a Weak First-Order Turning Point”, Differential

45. Equations, Vol.58, No 6, P. 727–740.

46. Eliseev A. G. 2022, “Example of Solution of a Singularly Perturbed Cauchy Problem for a

47. Parabolic Eqiuation in the Presence of strong Turning Point”, Differencialnie Uravnenia i

48. Protsesy Upravlenia, No 3, P. 46–58.

49. Landau L. D., Lifshitz E. M. 2008, “Course of theoretical physics, Vol. 3, Quantum mechanics

50. (non-relativistic theory)” [Kurs teoreticheskoy fiziki, T. 3, Kvantovaya mekhanika

51. (nerelyativistskaya teoriya)], Moscow: Fizmatlit. (In Russ.)

52. Arnol’d V. I. 1971, “On matrices depending on parameters”, Russian Math. Surveys, Vol.26,

53. No 2, P. 29–43.

54. Liouville, J. Second M´emoire sur le d´eveloppement des fonctions ou parties de fonctions en s´eries

55. dont les divers termes sont assuj´etis `a satisfaire `a une mˆeme ´equation diff´erentielle du second

56. ordre, contenant un param´etre variable // Journal de Math´ematiques Pures et Appliqu´ees,

57. , p. 16–35.

58. Elsgolts L. E. 1969, “Differential Equations and Variational Calculus” [ Differentsial’nyye

59. uravneniya i variatsionnoye ischisleniye], Moscow: Nauka. (In Russ.)


Review

For citations:


Eliseev A.G., Kirichenko P.V. Regularized asymptotics of the solution of a singularly perturbed mixed problem on the semiaxis for an equation of Schrodinger type in the presence of a strong turning point for the limit operator. Chebyshevskii Sbornik. 2023;24(1):50-68. (In Russ.) https://doi.org/10.22405/2226-8383-2023-24-1-50-68

Views: 371


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)