Congruences of a free unar
https://doi.org/10.22405/2226-8383-2023-24-1-15-26
Abstract
We obtain a complete description of all congruences of a free unar with arbitrary set of free generators. Namely, every congruence is characterized uniquely by a collection of parameters which are either non-negative integers or the symbol ∞; the restrictions on the parameters are formulated.
About the Authors
Cristina Viktorovna BudianskaiaRussian Federation
Igor Borisovich Kozhukhov
Russian Federation
professor, doctor of physical and mathematical sciences
References
1. Kilp M., Knauer U., Mikhalev A.V., 2000, Monoids, acts and categories. N.Y. – Berlin W. de
2. Gruyter, xvii + 529 pp.
3. Plotkin B.,I., Gringlaz L.,Ya., Gvaramiya A.,A., 1994, Elements of the algebraic theory of
4. automata. M., Higher School, 191 pp.
5. Avdeyev A.Yu., Kozhukhov I. B., 2000, “Acts over completely 0-simple semigroups” // Acta
6. Cybernetica, Vol. 14, Iss. 4, pp. 523 – 531.
7. Ohemke R. H., 1974, “Congruences and semisiplicity for Rees matrix semigroups” // Pacif. J.
8. Math., Vol. 54, Iss. 2, pp. 143 – 164.
9. Khaliullina A.,R., 2013, ‘Congruences of polygons over semigroups of right zeros"// Chebyshevskii
10. Sbornik, Vol. 14, Iss. 3, pp. 142–146.
11. Khaliullina A.,R., 2013, “Congruences of polygons over groups” // Izv. Sarat. un-ta. Nov. ser.
12. Ser. Mathematics. Mechanics. Computer Science, Vol. 13, Iss. 4(2), pp. 133 – 137.
13. Egorova D. P., 1978, “The structure of congruences of unary algebra” // Inter-university.
14. scientific. collection “Ordered Sets and lattices”, Iss. 5, pp. 11 – 44.
Review
For citations:
Budianskaia C.V., Kozhukhov I.B. Congruences of a free unar. Chebyshevskii Sbornik. 2023;24(1):15-26. (In Russ.) https://doi.org/10.22405/2226-8383-2023-24-1-15-26