Preview

Chebyshevskii Sbornik

Advanced search

Congruences of a free unar

https://doi.org/10.22405/2226-8383-2023-24-1-15-26

Abstract

We obtain a complete description of all congruences of a free unar with arbitrary set of free generators. Namely, every congruence is characterized uniquely by a collection of parameters which are either non-negative integers or the symbol ∞; the restrictions on the parameters are formulated.

About the Authors

Cristina Viktorovna Budianskaia
“East-West Technologies” LTD
Russian Federation


Igor Borisovich Kozhukhov
NRU “MIET”; Lomonosov Moscow State University
Russian Federation

professor, doctor of physical and mathematical sciences



References

1. Kilp M., Knauer U., Mikhalev A.V., 2000, Monoids, acts and categories. N.Y. – Berlin W. de

2. Gruyter, xvii + 529 pp.

3. Plotkin B.,I., Gringlaz L.,Ya., Gvaramiya A.,A., 1994, Elements of the algebraic theory of

4. automata. M., Higher School, 191 pp.

5. Avdeyev A.Yu., Kozhukhov I. B., 2000, “Acts over completely 0-simple semigroups” // Acta

6. Cybernetica, Vol. 14, Iss. 4, pp. 523 – 531.

7. Ohemke R. H., 1974, “Congruences and semisiplicity for Rees matrix semigroups” // Pacif. J.

8. Math., Vol. 54, Iss. 2, pp. 143 – 164.

9. Khaliullina A.,R., 2013, ‘Congruences of polygons over semigroups of right zeros"// Chebyshevskii

10. Sbornik, Vol. 14, Iss. 3, pp. 142–146.

11. Khaliullina A.,R., 2013, “Congruences of polygons over groups” // Izv. Sarat. un-ta. Nov. ser.

12. Ser. Mathematics. Mechanics. Computer Science, Vol. 13, Iss. 4(2), pp. 133 – 137.

13. Egorova D. P., 1978, “The structure of congruences of unary algebra” // Inter-university.

14. scientific. collection “Ordered Sets and lattices”, Iss. 5, pp. 11 – 44.


Review

For citations:


Budianskaia C.V., Kozhukhov I.B. Congruences of a free unar. Chebyshevskii Sbornik. 2023;24(1):15-26. (In Russ.) https://doi.org/10.22405/2226-8383-2023-24-1-15-26

Views: 354


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)