Preview

Chebyshevskii Sbornik

Advanced search

ON SATURATED FORMATIONS OF FINITE MONOUNARY ALGEBRAS

https://doi.org/10.22405/2226-8383-2014-15-2-66-72

Abstract

A class of algebraic systems which is closed under homomorphic images and finite subdirect products is called a formation. Formations was widely used in group theory. Particularly, the saturated formations of groups is one of the most studied formations. A formation of finite groups is said to be a saturated formation if G/Φ(G) ∈ F implies G ∈ F for an arbitrary finite group G and it’s Frattini subgroup Φ(G). A generalization of these definitions is as follows. A congruence θ on the algebraic system A is called a Frattini congruence if the union of all θ-classes generated by the elements of B differs from A for each proper subsystem B of the algebraic system A. A class X is saturated in the class Y, if A ∈ Y and A/θ ∈ X for some Frattini congruence θ on A implies A ∈ X. We consider finite formations of monounary algebras in this paper. An element a of a monounary algebra ⟨A, f⟩ is cyclic if f n (a) = a for some positive integer n. A monounary algebra is cyclic if all of it’s elements are cyclic. First we give a condition for a congruence of finite monounary algebra to be a Frattini congruence. Then we prove that the empty formation, the formation of all finite cyclic monounary algebras and the formation of all finite monounary algebras are the only saturated formations in the class of all finite monounary algebras.

About the Author

A. L. Rasstrigin
Волгоградский государственный социально-педагогический университет
Russian Federation


References

1. Шеметков Л. А., Скиба А. Н. Формации алгебраических систем. М.: Наука, 1989. 256 с.

2. Шеметков Л. А. Формации конечных групп. М.: Наука, 1978. 272 с.

3. Gasch¨utz W. Zur theorie der endlichen aufl¨osbaren Gruppen // Mathematische Zeitschrift. 1963. Bd. 80, H. 1. S. 300–305.

4. Kiss E.W., Vovsi S. M. Critical algebras and the Frattini congruence // Algebra Universalis. 1995. Vol. 34, No. 3. Pp. 336-344.

5. Мальцев А. И. Алгебраические системы. М.: Наука, 1970. 392 с.

6. Skornjakov L. A. Unars // Universal algebra (Esztergom, 1977). Colloq. Math. Soc. J´anos Bolyai, 29. North-Holland, Amsterdam-New York, 1982.

7. Jakub´ıkov´a-Studenovsk´a D., P´ocs J. Monounary Algebras. Pavol Jozef Saf´arik ˇ University (UPJS), Koˇsice, 2009. 304 pp.

8. Карташов В. К. О некоторых результатах и нерешенных задачах теории унарных алгебр // Чебышевский сборник. 2011. Т. XII, № 2 (38). С. 18–26.

9. Карташов В. К. Квазимногообразия унаров // Мат. заметки. 1980. Т. 27, № 1. С. 7–20.

10. Расстригин А. Л. Формации конечных унаров // Чебышевский сборник. 2011. Т. XII, № 2 (38). С. 102–109.

11. Jakub´ıkov´a-Studenovsk´a D., P´ocs J. Formations of finite monounary algebras // Algebra universalis. 2012. Vol. 68, no. 3-4. P. 249–255.

12. Jakub´ıkov´a-Studenovsk´a D. On pseudovarieties of monounary algebras // Asian-European Journal of Mathematics. 2012. Vol. 5, no. 1. 10 p.

13. Расстригин А. Л. О решетках формаций унаров // Ученые записки Орловского государственного университета. 2012. № 6 (50). С. 190–194.

14. Расстригин А. Л. О наследственности формаций унаров // Изв. Сарат. ун- та. Нов. сер. Сер. Математика. Механика. Информатика. 2013. Т. 13, № 4. С. 108–113.

15. Yoeli M. Subdirectly irreducible unary algebras // Amer. Math. Monthly. 1967. Vol. 74. P. 957–960.

16. Wenzel G. H. Subdirect irreducibility and equational compactness in unary algebras ⟨A; f⟩. // Archiv der Mathematik. 1970. Vol. 21. P. 256–264.

17. Burris S., Sankappanavar H. P. A Course in Universal Algebra. Graduate Texts in Mathematics no. 78. Springer-Verlag, 1981. URL: http://www.math. uwaterloo.ca/~snburris/htdocs/ualg.html


Review

For citations:


Rasstrigin A.L. ON SATURATED FORMATIONS OF FINITE MONOUNARY ALGEBRAS. Chebyshevskii Sbornik. 2014;15(2):66-72. (In Russ.) https://doi.org/10.22405/2226-8383-2014-15-2-66-72

Views: 392


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)