SOME RESIDUAL PROPERTIES OF SOLUBLE GROUPS OF FINITE RANK
https://doi.org/10.22405/2226-8383-2014-15-1-7-18
Abstract
The generalization of one classical Smel’kin’s theorem for polycyclic groups is obtained. A. L. Smelkin proved that if G is a polycyclic group, then it is a virtually residually finite p-group for any prime p. Recall that a group G is said to be a residually finite p-group if for every nonidentity element a of G there exists a homomorphism of the group G onto some finite p-group such that the image of the element a differs from 1. A group G will be said to be a virtually residually finite p-group if it contains a finite index subgroup which is a residually finite p-group. One of the generalizations of the notation of polycyclic group is a notation of soluble finite rank group. Recall that a group G is said to be a group of finite rank if there exists a positive integer r such that every finitely generated subgroup in G is generated by at most r elements. For soluble groups of finite rank the following necessary and sufficient condition to be a residually finite π-group for some finite set π of primes is obtained. If G is a group of finite rank, then the group G is a residually finite π- group for some finite set π of primes if and only if G is a reduced poly-(cyclic, quasicyclic, or rational) group. Recall that a group G is said to be a reduced group if it has no nonidentity radicable subgroups. A group H is said to be a radicable group if every element h in H is an mth power of an element of H for every positive number m. It is proved that if a soluble group of finite rank is a residually finite π- group for some finite set π of primes, then it is a virtually residually finite nilpotent π-group. We prove also the following generalization of Smel’kin’s theorem. Let π be a finite set of primes. If G is a soluble group of finite rank, then the group G is a virtually residually finite π-group if and only if G is a reduced poly-(cyclic, quasicyclic, or rational) group and G has no π-radicable elements of infinite order. Recall that an element g in G is said to be π-radicable if g is an mth power of an element of G for every positive π-number m.
References
1. Hirsh K. A. On infinite soluble groups // J. London Math. Soc. 1952. Vol. 27. P. 81–85.
2. Learner A. Residual properties of polycyclic groups // J. Math. 1984. Vol. 8. P. 536–542.
3. Шмелькин А. Л. Полициклические группы // Сиб. мат. журн. 1968. Т. 9. С. 234–235.
4. Lennox J., Robinson D. The theory of infinite soluble groups. Oxford.: Clarendon press, 2004. 344 P.
5. Baumslag G., Solitar D. Some two-generator one-relator non-Hopfian groups // Bull. Amer. Math. Soc. 1962. Vol. 68. P. 199–201.
6. Meskin S. Nonresidually finite one-relator groups // Trans. Amer. Math. Soc. 1972. Vol. 164. P. 105–114.
7. Азаров Д. Н. О почти аппроксимируемсти конечными p-группами групп Баумслага — Солитэра // Моделирование и анализ информ. систем. 2013. Т. 20, вып. 1. С. 116–123.
8. Moldavanskii D. On some residuall properties of Baumslag Solitar groups // ArXiv: math.GR/1310.3585 Vol. 1. 2013.
9. Азаров Д. Н. О почти аппроксимируемсти конечными p–группами // Чебышевский сборник. 2010. Т. 11, вып. 3. С. 11–21.
10. Мальцев А. И. О гомоморфизмах на конечные группы // Учен. зап. Иван. гос. пед. ин-та. 1958. Т. 18, вып. 5. С. 49–60.
11. Азаров Д. Н. О почти аппроксимируемости конечными p-группами некоторых разрешимых групп // Вестник Иван. гос. ун-та. 2012. Вып. 2. С. 80–85.
12. Мальцев А. И. О группах конечного ранга // Мат. сб. 1948. Т. 22(2). С. 351–352.
13. Lubotzki. A., Mann A. Residually finite groups of finite rank // Math. Proc. Comb. Phil. Soc. 1989. Vol. 106(3). P. 385–388.
14. Азаров Д. Н. Об аппроксимируемости конечными p-группами групп конечного ранга // Вестник Иван. гос. ун-та. 2001. Вып. 3. С. 102–104.
15. Сексенбаев К. К теории полициклических групп // Алгебра и логика. 1965. Т. 4, вып. 3. С. 79–83.
Review
For citations:
Azarov D.N. SOME RESIDUAL PROPERTIES OF SOLUBLE GROUPS OF FINITE RANK. Chebyshevskii Sbornik. 2014;15(1):7-18. (In Russ.) https://doi.org/10.22405/2226-8383-2014-15-1-7-18