On the Poincar´e-Birkhoff theorem as the important result of the theory of dynamical systems
https://doi.org/10.22405/2226-8383-2022-23-1-209-222
Abstract
The aim of this work is to study the history of the Poincar´e-Birkhoff theorem, which is not only one of the results underlying the theory of dynamical systems, but is important for applications. Until now, the Poincar´e-Birkhoff theorem has been considered historically only fragmentarily and has not been the subject of consistent historical research. The research is based on the analysis of original works, historical and scientific literature, involving the recollections of participants in the described events. Poincar´e’s idea was to establish the periodic motions of dynamical systems using the geometric theorem he proposed. Periodic movements, in turn, were supposed to serve as a basis for studying other, complex movements. The search for a proof was a powerful impetus for Birkhoff in the construction of the theory of dynamical systems, who, together with Poincar´e, is the founder of this area of mathematics. Poincar´e- Birkhoff theorem is of key importance in understanding the mechanism of the onset of chaotic motion in Hamiltonian systems. The history of the Poincar´e-Birkhoff theorem is not complete;
it plays a significant role in the modern theory of dynamical systems and its applications.
The search continues for a proof of a multidimensional analogue of the theorem, its various generalizations, and further applications.
Keywords
About the Author
Ravil’ Rafkatovich MukhinRussian Federation
doctor of physical and mathematical sciences
References
1. Poincar´e H. Les m´ethodes nouvelles de la m´ecanique c´eleste. Paris: Gauthier-Villars, 1892. Tome 1. 408 p. 1893. Tome II. 500 p. 1899. Tome III. 429 p.
2. Newton I. Mathematical Principles of Natural Philosophy. N.Y.: Daniel Adee, 1846. 575 p.
3. Idelson N.I. The law of universal gravitation and the theory of the motion of the moon // N.I. Idelson. Studies on the history of celestial mechanics. Moscow: Nauka, 1975. pp. 205–272 (in Russian).
4. Poincar´e H. Memoire sur les courbes d´efinies par une ´equation differentielle // J. math. pures et appl. S´er. 3. 1881. V. 7. pp. 375–422; 1882. V. 8. pp. 251–296; S´er. 4. 1885. V. 1. pp. 167–244; 1886. V. 2. pp. 151–217
5. Subbotin M.F. Astronomical works of Leonard Euler // Leonard Euler. Collection in honor of the 250th birthday anniversary. Moscow: Publishing House of the Academy of Sciences of the USSR, 1958, pp. 268–376 (in Russian).
6. Lagrange J.L. Essai sur le Probl`eme des trois Corps // Oeuvres de Lagrange. T. VI. Paris, 1873. pp. 229–234.
7. Hill G.W. Researches in the Lunar Theory // Am. J. Math. 1878. V. 1. pp. 5–26, 129–147, 245–260.
8. Poincar´e H. Sur certaines solutions particuli´eres du probl`eme des trois corps // Comp. Rend. 1883. T. 97. pp. 251–252.
9. Poincar´e H. Sur certaines solutions particuli´eres du probl`eme des trois corps // Bull. astronom. 1884. T. 1. pp. 65–74.
10. Poincar´e H. Sur le probl`eme des trois corps et les ´equations de la Dynamique // Acta Math. 1890. V. 13. pp. 1–270.
11. Marshal C. The there-body problem. Amsterdam: Elsevier, 1990. 575 p.
12. Poincar´e H. Sur les solutions p´eriodiques et le principle de moindre action // Comp. Rend. 1896. T. 123. pp. 915–918.
13. Chenciner A. A note by Poincar´e // Nonlin. dyn. 2005. V. 1. N. 1. pp. 143—154 (in Russian).
14. Hadamard J. Les surfaces `a courbures oppose´es et leurs lignes g´eod´esiques // J. Math. pures et appl. 1898. V. 4. pp. 27–73.
15. Poincar´e H. Sur les lignes g´eod´esiques des surfaces convexes // Trans. AMS. 1905. V. 6. pp. 237–274.
16. Poincar´e A. Science and Method. London : T. Nelson, 1914. 296 p.
17. Poincar´e H. Sur un th´eor`eme de g´eometrie // Rendicont. Circolo mat. Palermo. 1912. V. 33. pp. 375–407.
18. Birkhoff G.D. Dynamical Systems. Providence, Rhod Island: AMS, 1927. IX - 295 p.
19. Birkhoff G.D. Proof of Poincare’s geometric theorem // Trans. AMS. 1913. V.14. pp. 14–22.
20. Veblen O. George David Berkhoff // Biograph. Memoirs. The National Academy Press, 2001. V. 80. pp. 2–14.
21. Birkhoff G.D. An extension of Poincare’s last geometric theorem // Acta. Math. 1926. V. 47. pp. 297–311.
22. Brown M., Neumann W.D. Proof of Poincare-Birkhoff fixed point theorem // Michigan Math. J. 1977. V. 24. pp. 21–31.
23. Kirillov A.N. Poincar´e’s last geometric theorem: history and drama of ideas / Seminar on the history of mathematics. September 7, 2017 St. Petersburg, POMI, Fontanka 27 (in Russian).
24. Hurvitz W.A. The Chicago Colloquium // Bull. AMS. 1920. V. 27. pp. 65–71.
25. Birkhoff G.D. On the periodic motions of dynamical systems // Acta Math. 1927. V. 50. pp. 359–379.
26. Birkhoff G.D. A remark on the dynamical rule of Poincare’s last geometric theorem // Acta litt. аc Scientiarum, sect Sciantiarum math. Szeged, 15 Aug. 1928. V. 4. pp. 6–11.
27. Birkhoff G.D., Smith P. Structure Analysis of Surface Transformations // J. Math. Pures Appl. 1928. V. 9. pp. 345–379.
28. Birkhoff G.D. Nouvelles recherches sur les syst`ems dynamiques // Mem. Pont. Acad. Sci. Novi Lyncaei. 1935. S. 3. V.1. pp. 85–216.
29. Zaslavsky G.M., Chirikov B.V. Stochastic instability of nonlinear oscillations // Soviet Physics. Uspekhi. 1971. V. 105. Issue 1. pp. 3–39.
30. Likhtenberg A., Liberman M. Regular and stochastic dynamics. N.Y.: Springer-Verlag, 1983. 692 p.
31. Arnold V.I. On the stability of equilibrium positions of a Hamiltonian system of ordinary differential equations in the general elliptic case // Reports of the Academy of Sciences of the USSR. 1961. T. 137. No. 2. pp. 255–257 (in Russian).
32. Loskutov A.Yu. Dynamic chaos. Systems of classical mechanics // Soviet Physics. Uspekhi. 2007. T. 177. No. 9. Р. 989–1015 (in Russian).
33. Arnold V.I., Avez A. Ergodic problems of classical mechanics. Princeton, N.J.: Princeton Univ. Press, 1968. 286 p.
34. Zaslavsky G.M. Physics of chaos in Hamiltonian systems. L.: Imperial College Press, 1998. 315 p.
35. Arnold V.I. First steps of symplectic topology // Russian Math. Survey. 1986. V. 41. Issue 6. pp. 3–18 (in Russian).
36. Arnold V.I. Mathematical methods of classical mechanics N.Y.: Springer-Verlag, 1989. 464 p.
37. Arnold V.I. Underestimated Poincar´e // Russian Math. Survey. 2006. V. 61. Issue 1. pp. 3–24 (in Russian).
38. Cohnley C.C., Zehnder E. The Birkhoff-Lewis fixed point theorem and a conjecture of V.I. Arnold // Invent. Math. 1983. V. 73. pp. 33–49.
Review
For citations:
Mukhin R.R. On the Poincar´e-Birkhoff theorem as the important result of the theory of dynamical systems. Chebyshevskii Sbornik. 2022;23(1):209-222. (In Russ.) https://doi.org/10.22405/2226-8383-2022-23-1-209-222