Preview

Чебышевский сборник

Расширенный поиск

Численная оптимизация процесса получения шихты электродиспергированием отходов сплава Т5К10

https://doi.org/10.22405/2226-8383-2022-23-1-183-196

Аннотация

Одной из основных проблем использования вольфрамсодержащих твердых сплавов в настоящее время является высокая стоимость вольфрама. Ввиду высокой температуры плавления существует проблема их переработки для вторичного использования. Одним из перспективных методов их переработки в порошки сферической формы является электроэрозионное диспергирование (ЭЭД). К настоящему времени в современной научно-
технической литературе отсутствуют полноценные сведения об использовании диспергированных электроэрозией частиц сплава Т5К10 в качестве шихты для производства вольфрамо-титано-кобальтовых сплавов и режущего инструменты из них. Для этих целей требуется проведение комплексных теоретических и экспериментальных исследований.
Для прогнозирования высоких физико-механических свойств изделий из полученной шихты требовалось провести оптимизацию режимов электроэрозионного диспергирования отходов сплава Т5К10 методом планирования эксперимента. Для шихты одним из основных технологических параметров является оптимальная дисперсность, поэтому оптимизацию процесса получения шихты для производства спеченных твердых сплавов проводили по среднему размеру частиц. Электроэрозионное диспергирование отходов сплава Т5К10 осуществляли на экспериментальной установке (Патент РФ № 2449859). В результате воздействия кратковременных электрических разрядов образовывались твердосплавные частицы различной формы и размера. Оптимизация процесса электродиспергирования
частиц, полученных ЭЭД отходов твердого сплава марки Т5К10, проводилась опытным определением сочетания уровней факторов, при котором достигалось необходимое значение среднего диаметра частиц электроэрозионной шихты. Для этого использовали метод крутого восхождения Бокса и Уилсона. Оптимизации процесса электродиспергирования сплава Т5К10 в дистиллированной воде и осветительном керосине осуществлялась с учетом таких факторов, как напряжение на электродах, емкость разрядных конденсаторов и
частота следования импульсов.

Согласно проведенной серии опытов определены предельные значения параметра оптимизации по среднему размеру электроэрозионных частиц, которые составили: для дистиллированной воды – 57,1 мкм при ёмкости разрядных конденсаторов 65,5 мкФ, напряжении на электродах 200 В, частоте следования импульсов 200 Гц; для осветительного керосина – 64,1 мкм при ёмкости разрядных конденсаторов 65,5 мкФ, напряжении на электродах
200 В, частоте следования импульсов 200 Гц.
Проведение намеченных мероприятий позволит решить проблему переработки отходов вольфрамо-титано-кобальтовых сплавов и повторное их использование при изготовлении режущего инструмента.

Об авторах

Евгений Викторович Агеев
Юго-Западный государственный университет
Россия

доктор технических наук, профессор



Екатерина Владимировна Агеева
Юго-Западный государственный университет
Россия

кандидат технических наук, доцент



Александр Евгеньевич Гвоздев
Тульский государственный педагогический университет им. Л.Н. Толстого
Россия

доктор технических наук, профессор



Антон Алексеевич Калинин
Тульский государственный университет
Россия


Список литературы

1. Авдеенко Е.Н., Замулаева Е.И., Зайцев А.А., Коняшин И.Ю., Левашов Е.А. Структура и свойства крупнозернистых твердых сплавов WC-Cо с особо однородной микроструктурой // Известия высших учебных заведений. Цветная металлургия. 2019. № 4. С. 70-78.

2. Богодухов С.И., Козик Е.С., Свиденко Е.В. Исследование влияния температурных полей нагрева при непрерывной лазерной обработке на эксплуатационные свойства пластин твердого сплава Т15К6 // Известия высших учебных заведений. Порошковая металлургия и функциональные покрытия. 2018. № 2. С. 76-84.

3. Самотугин С.С., Кудинова Е.В., Христенко О.А., Беляковский В.П., Шибистая Я.Н. Выбор оптимальных режимов плазменной обработки инструмента из твердых сплавов // Технология машиностроения. 2018. № 7. С. 30-34.

4. Дворник М.И., Михайленко Е.А. Использование недостатка углерода для создания наноструктурного градиентного твердого сплава // Бюллетень научных сообщений. 2018. № 23. С. 22-27.

5. Богодухов С.И., Козик Е.С., Свиденко Е.В., Игнатюк В.Д. Термическая обработка неперетачиваемых пластин из твердого сплава Т15К6 непрерывным лазерным излучением // Упрочняющие технологии и покрытия. 2019. Т. 15. № 1 (169). С. 26-30.

6. Быстров В.А. Эффективность упрочнения твердым сплавом сменных деталей металлургических агрегатов // Известия высших учебных заведений. Черная металлургия. 2018. Т. 61. № 12. С. 939-947.

7. Latypov R.A., Latypova G.R., Ageev E.V., Altukhov A.Y., Ageeva E.V. Elemental composition of the powder particles produced by electric discharge dispersion of the wastes of a VK8 hard alloy // Russian metallurgy (Metally). 2017. Т. 2017. № 12. С. 1083-1085.

8. Ageev E.V., Ugrimov A.S., Latypov R.A. Metallurgical features of the manufacture of hardalloy powders by electroerosive dispersion of a T15K6 alloy in butanol // Russian metallurgy (Metally). 2016. Т. 2016. № 12. С. 1155-1157.

9. Ageev E.V., Ageeva E.V., Latypov R.A. Investigation into the properties of electroerosive powders and hard alloy fabricated from them by isostatic pressing and sintering // Russian Journal of Non-Ferrous Metals. 2015. Т. 56. № 1. С. 52-62.

10. Кочергин С.А., Моргунов К.Т.Н.Ю.А., Саушкин Д.Т. Конечно-элементное моделирование процесса искрового плазменного спекания режущих пластин // СТИН. 2015. № 10. С. 28- 32.

11. Смирнов А.В., Юшин Д.И., Кузнецов В.А. Моделирование искрового плазменного спекания: цели, задачи, проблемы и пути их решения // Молодой ученый. 2016. № 25 (129). С. 66-72.

12. Забелин Д.А., Чайникова А.С., Качаев А.А., Осин И.В., Гращенков Д.В. Синтез, структура и свойства керамики на основе оксинитрида алюминия (AlON), полученной методом искрового плазменного спекания // Труды ВИАМ. 2019. № 6 (78). С. 13-19.

13. Пристинский Ю.О., Перетягин Н.Ю., Кузнецова Е.В., Перетягин П.Ю. Сравнение механических свойств твердых сплавов вк6, полученных традиционным методом и искровым плазменным спеканием // Вестник машиностроения. 2019. № 9. С. 51-54.

14. Агеев Е. В., Латыпов Р. А., Агеева Е. В. Исследование свойств электроэрозионных порошков и твердого сплава, полученного из них изостатическим прессованием и спеканием // Известия высших учебных заведений. Цветная металлургия. 2014. №6. С. 51–55.

15. Агеева Е. В., Хорьякова Н. М., Агеев Е. В. Морфология и элементный состав медных электроэрозионных порошков, пригодных к спеканию // Вестник машиностроения. 2014. №10. С. 66–68.

16. Агеева Е. В., Агеев Е. В., Воробьев Е. А. Рентгеноспектральный микроанализ порошка, полученного из отходов быстрорежущей стали электроэрозионным диспергированием в керосине // Вестник машиностроения. 2014. №11. С. 71–72.

17. Агеева Е. В., Хорьякова Н. М., Агеев Е. В. Исследование формы и морфологии электроэрозионных медных порошков, полученных из отходов // Вестник машиностроения. 2014. №8. С. 73–75.

18. Агеева Е. В., Хорьякова Н. М., Агеев Е. В. Исследование распределения микрочастиц по размерам в порошках, полученных электроэрозионным диспергированием медных отходов // Вестник машиностроения. 2014. №9. С. 63–64.

19. Агеев Е. В., Агеева Е. В., Воробьев Е. А. Гранулометрический и фазовый составы порошка, полученного из вольфрамсодержащих отходов инструментальных материалов электроэрозионным диспергированием в керосине // Упрочняющие технологии и покрытия. 2014. №4

20. (112). С. 11–14.

21. Агеева Е. В., Агеев Е. В., Воробьев Е. А. Анализ формы и морфологии частиц порошка, полученного из вольфрамсодержащих отходов электроэрозионным диспергированием в керосине // Вестник машиностроения. 2015. №7. С. 72–73.


Рецензия

Для цитирования:


Агеев Е.В., Агеева Е.В., Гвоздев А.Е., Калинин А.А. Численная оптимизация процесса получения шихты электродиспергированием отходов сплава Т5К10. Чебышевский сборник. 2022;23(1):183-196. https://doi.org/10.22405/2226-8383-2022-23-1-183-196

For citation:


Ageev Ye.V., Ageeva E.V., Gvozdev A.E., Kalinin A.A. Numerical optimization of the charge production process by electrodispersion of T5K10 alloy waste. Chebyshevskii Sbornik. 2022;23(1):183-196. (In Russ.) https://doi.org/10.22405/2226-8383-2022-23-1-183-196

Просмотров: 283


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)