Preview

Chebyshevskii Sbornik

Advanced search

Mean-squared approximation of some classes of complex variable functions by Fourier series in the weighted Bergman space 𝐵_2,𝛾

https://doi.org/10.22405/2226-8383-2022-23-1-167-182

Abstract

The article considers extremal problems of mean-square approximation of functions of a complex variable, regular in the domain D ⊂ C, by Fourier series orthogonal in the system of functions {𝜙_𝑘(𝑧)}∞𝑘=0 in D belonging to the weighted Bergman space 𝐵2,𝛾 with finite norm

$$‖𝑓‖2,𝛾 := ‖𝑓‖𝐵2,𝛾 =(1/2𝜋∫︁∫︁(D) 𝛾(|𝑧|)|𝑓(𝑧)|^2 𝑑𝜎)^(1/2),$$

where 𝛾 := 𝛾(|𝑧|) ≥ 0 is a real integrable function in the domain D, and the integral is understood in the Lebesgue sense, 𝑑𝜎 := 𝑑𝑥𝑑𝑦 is an element of area.
The formulated problem is investigated in more detail in the case when D is the unit disc in the space 𝐵_2,𝛾𝛼,𝛽 , 𝛾_𝛼,𝛽 = |𝑧|^𝛼(1 − |𝑧|)^𝛽, 𝛼, 𝛽 > −1 – Jacobi weight. Sharp Jackson-Stechkintype inequalities that relate the value of the best mean-squared polynomial approximation of 𝑓 ∈ ℬ^(𝑟)_2,𝛾𝛼,𝛽 and the Peetre K -functional were proved. In case when 𝛾𝛼,𝛽 ≡ 1 we will obtain the earlier known results.

About the Authors

Mirgand Shabozovich Shabozov
Tajik National University
Tajikistan

doctor of physical and mathematical sciences, professor, academician of the National Academy of Sciences of Tajikistan



Mukim Saidusainovich Saidusainov
Tajik National University
Tajikistan


References

1. Smirnov V. I., Lebedev N. A., 1964, “Functions of a Complex Variable: Constructive Theory”, Moscow: Nauka, 440 p.

2. Abilov V. A., Abilova F. V., Kerimov M. K., 2010, “Sharp estimates for the convergence rate of Fourier series of complex variable functions in 𝐿2(𝐷, 𝑝(𝑧))”, Computational Mathematics and Mathematical Physics, vol. 50, no. 6, pp. 946 – 950.

3. Shabozov M. Sh., Saidusaynov M. S., 2018, “Mean-square approximation of complex variable functions by Fourier series in the weighted Bergman space”, Vladikavkaz. Mat. Zh, vol. 20, no. 1. pp. 86 – 97.

4. Bitsadze A. V., 1984, “Osnovy Teorii Analiticheskih Funktsij Kompleksnogo Peremennogo”, Moscow: Nauka, 320 p.

5. Fikhtengol’ts G. M. “Kurs differentsial’nogo i integral’nogo ischisleniya, t.2”, Moscow: Nauka, 800 p.

6. Shabozov M. Sh., Saidusaynov M. S., 2019, “Upper Bounds for the Approximation of Certain Classes of Functions of a Complex Variable by Fourier Series in the Space 𝐿2 and 𝑛-Widths”, Mathematical Notes, vol. 103, no. 4, pp. 656–668.

7. Vakarchuk S. B., 2006, “Jackson-type inequalities and widths of function classes in 𝐿2”, Mathematical Notes, vol. 80, no. 1, pp. 11–18.

8. Shabozov M. Sh., Vakarchuk S. B., 2012, “On the best approximation of periodic functions by trigonometric polynomials and the exact values of widths of function classes in 𝐿2”, Analysis Mathematica, vol. 38, no. 2, pp. 147–159.

9. Shabozov M. Sh., Vakarchuk S. B., Zabutnaya V. I. 2015, “Structural characteristics of functions from 𝐿2 and the exact values of widths of some functional classes”, Journal of Mathematical Sciences, vol. 206, no. 1., pp. 97 – 114.

10. Vakarchuk S. B., Shabozov M. Sh., 2010 “The widths of classes of analytic functions in a disc”, vol. 201, no. 8, 1091–1110.

11. Shabozov M. Sh., Yusupov G. A. 2016, “Best approximation methods and widths for some classes of functions in 𝐻𝑞,𝜌, 1 ≤ 𝑞 ≤ ∞, 0 < 𝜌 ≤ 1”, Siberian Mathematical Journal, vol. 57, no. 2, pp. 369–376.

12. Bergh J., Lofstrom J., 1976, “Interpolation Spaces”, Springer-Verlag, Berlin Heidelberg, New York, 220 p.

13. Mhaskar N. H., 1986, “Weighted polynomial Approximation”, J. Approx. Theory, vol. 46, no. 1, pp. 100 – 110.

14. Ditzian Z., Totik V., 1986, “K -functionals and best polynomial approximation in weighted 𝐿𝑝(R)”, J. Approx. Theory, vol. 46, no. 1, pp. 38 – 41.

15. Vakarchuk S. B., 2014, “Mean approximation of functions on the real axis by algebraic polynomials with Chebyshev-Hermite weight and widths of function classes”, Mathematical Notes, vol. 95, no. 5, pp. 599–614.

16. Shabozov M. Sh., Saidusaynov M. S., 2019, “Mean-square approximation of functions of a complex variable by Fourier sums in orthogonal systems”, Trudy Inst. Mat. i Mekh. UrO RAN, vol. 25, no 2, pp. 351 – 364.

17. Saidusaynov M.S., 2017, “K -functionals and exact values of 𝑛-widths in the Bergman space”, Ural Mathematical Journal, vol. 3, no. 2(5), pp. 74 – 81.


Review

For citations:


Shabozov M.Sh., Saidusainov M.S. Mean-squared approximation of some classes of complex variable functions by Fourier series in the weighted Bergman space 𝐵_2,𝛾. Chebyshevskii Sbornik. 2022;23(1):167-182. (In Russ.) https://doi.org/10.22405/2226-8383-2022-23-1-167-182

Views: 321


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)