Infinite linear independence with constraints on a subset of prime numbers of values of Eulerian-type series with polyadic Liouville parameter
https://doi.org/10.22405/2226-8383-2022-23-1-153-166
Abstract
A ring of polyadic integers is a direct product of rings of integer 𝑝-adic numbers over all primes 𝑝. The elements 𝜃 of this ring can thus be considered as infinite-dimensional vectors whose coordinates in the corresponding ring of integer 𝑝-adic numbers are denoted by 𝜃^(𝑝). The infinite linear independence of polyadic numbers 𝜃_1, . . . , 𝜃_𝑚 means that for any nonzero linear form ℎ_1𝑥_1 + . . . + ℎ_𝑚*𝑥_𝑚 with integer coefficients ℎ_1, . . . , ℎ_𝑚 there is an infinite set of primes 𝑝 such that in the field Q_𝑝 the inequality
$$ℎ_1𝜃_1^(𝑝) + . . . + ℎ_𝑚𝜃_m^(𝑝) ̸= 0.$$
holds. At the same time, problems in which primes are considered only from some proper subsets of the set of primes are of interest. In this case, we will talk about infinite linear independence with restrictions on the specified set. Canonical representation of the element 𝜃 of the ring of polyadic integers has the form of a series
$$𝜃 =∞Σ︁𝑛=0𝑎_𝑛*𝑛!, 𝑎_𝑛 ∈ Z, 0 ≤ 𝑎_𝑛 ≤ 𝑛.$$
Of course, a series whose members are integers converging in all fields of 𝑝-adic numbers is a polyadic integer. We will call a polyadic number 𝜃 a polyadic Liouville number (or a Liouville polyadic number) if for any numbers 𝑛 and 𝑃 there exists a natural number 𝐴 such that for all primes 𝑝 satisfying the inequality 𝑝 ≤ 𝑃 the inequality
$$|𝜃 − 𝐴|_𝑝 < 𝐴^(−𝑛).$$
This work continues the development of the basic idea embedded in [15]. Here the infinite linear independence with restrictions on the set of prime numbers in the aggregate of arithmetic progressions. of polyadic numbers
$$𝑓_0(1) =∞Σ︁𝑛=0(𝜆)_𝑛, 𝑓_1(1) =∞Σ︁𝑛=0(𝜆 + 1)_𝑛.$$
will be proved. An important apparatus for obtaining this result are Hermite–Pade approximations of generalized hypergeometric functions constructed in the work of Yu.V. Nesterenko [4].
The approach from the work of Ernvall-Hytonen, Matala-Aho, Seppela [5] was used.
About the Author
Vladimir Grirorevich ChirskiiRussian Federation
doctor of physical and mathematical sciences
References
1. Chirskii V. G., 2020“Arithmetic Properties of Euler-Type Series with a Liouvillean Polyadic Parameter“, Dokl. Math., Vol.102,no.2. pp.412-413.
2. Chirskii V. G. 2021, “Arithmetic Properties of an Euler-Type Series with Polyadic Liouvillean Parameter“, Russ.J.Math.Phys., Vol.28, no.3, pp.294-302.
3. Chirskii V. G. 2021,“ Arithmetic Properties of Values at Polyadic Liouvilleanan Point of an Euler-Type Series with Polyadic Liouvillean Parameter“, Chebyshevsky sbornik, Vol. 22, no.3, pp.156-167.
4. Nesterenko Yu. V. 1995. “Hermite-Pade approximants of generalized hypergeometric functions“, Russ.Acad.Sci.Sb.Math.,Vol83. pp.189-219.
5. Ernvall-Hytonen A-M., Matala-aho T.,Seppela L.,2019. “ Euler’s divergent series in arithmetic progressions“, J.Integer Sequences,v.22.-2019.-Article 19.2.2,10pp.
6. Prachar K. 1957 “Primzahlverteilung“, Springer-Verlag.-Berlin.-Gottingen.-Heidelberg , 512 pp.
7. Bertrand D., Chirskii V. G., Yebbou J. 2004. “ Effective estimates for global relations on Eulertype series“, Ann. Fac. Sci. Toulouse, Vol.13,no.2, pp.241-260.
8. Shidlovskii, A. B.1989.“ Transcendental Numbers“, W.de Gruyter.-Berlin.-New York.467pp.
9. Matveev V.Yu. 2018 “ Algebraic independence of certain almost polyadic series“, Chebyshevsky sbornik, Vol. 17, no.3, pp.156-167.
10. Chirskii V. G. 2014. “ Arithmetic properties of polyadic series with periodic coefficients“, Dokl. Math. Vol. 90, no.3, pp. 766–768.
11. Chirskii V. G. 2018. “ Arithmetic properties of generalized hypergeometric 𝐹– series“, Dokl. Math. Vol. 98, no.3, pp.589–591.
12. Matala-aho T. , Zudilin W. V.2018. “Euler factorial series and global relations“, J. Number Theory Vol. 186, pp. 202-210.
13. Chirskii V. G. 2019, “Product Formula, Global Relations and Polyadic Integers“, Russ. J. Math. Phys. , Vol.26, no.3, pp.286-305.
14. Chirskii V. G.2020. “ Arithmetic properties of generalized hypergeometric 𝐹– series“, Russ. J. Math. Phys., Vol.27, no.2, pp.175-184.
15. Chirskii V. G.2020. “Polyadic Liouville numbers𝐹– series“, Chebyshevsky sbornik, Vol. 22, no.3, pp.245-255.
16. Chirskii V. G.2020. “On Polyadic Liouville numbers“ , Chebyshevsky sbornik, Vol. 22, no.5, pp.243-251.
Review
For citations:
Chirskii V.G. Infinite linear independence with constraints on a subset of prime numbers of values of Eulerian-type series with polyadic Liouville parameter. Chebyshevskii Sbornik. 2022;23(1):153-166. (In Russ.) https://doi.org/10.22405/2226-8383-2022-23-1-153-166