Integral manifolds of the first fundamental distribution 𝑙𝑐𝐴𝐶𝑆-structure
https://doi.org/10.22405/2226-8383-2022-23-1-142-152
Abstract
In paper we consider aspects of the Hermitian geometry of 𝑙𝑐𝐴𝐶𝑆structures. The effect of the vanishing of the Neyenhuis tensor and the associated tensors 𝑁(1), 𝑁(2), 𝑁(3), 𝑁(4) on the class of almost Hermitian structure induced on the first fundamental distribution of 𝑙𝑐𝐴𝐶𝑆structures is investigated. It is proved that the almost Hermitian structure induced on integral manifolds of the first fundamental distribution: 𝑙𝑐𝐴𝐶𝑆-manifolds is a structure of the class 𝑊2 ⊕ 𝑊4,
and it will be almost K¨ahler if and only if 𝑔𝑟𝑎𝑑 𝜎 ⊂ 𝐿(𝜉); an integrable 𝑙𝑐𝐴𝐶𝑆-manifold is a structure of the class 𝑊4; a normal 𝑙𝑐𝐴𝐶𝑆-manifold is a K¨ahler structure; a 𝑙𝑐𝐴𝐶𝑆-manifold for which 𝑁(2)(𝑋, 𝑌 ) = 0, or 𝑁(3)(𝑋) = 0, or 𝑁(4)(𝑋) = 0, is an almost K¨ahler structure in the Gray-Herwell classification of almost Hermitian structures.
About the Authors
Aligaji Rustanov RustanovRussian Federation
candidate of physical and mathematical sciences
Elena Aleksandrovna Polkina
Russian Federation
candidate of physical and mathematical sciences
Galina Vasilyevna Teplyakova
Russian Federation
candidate of pedagogical sciences
References
1. Blair, D. E. 1976, “Contact manifolds in Riemannian geometry”, Lecture Notes in Mathematics. Springer-Verlag, Berlin, Heidelberg, vol. 509. pp. 1-146.
2. Kirichenko, V. F. 1988, “Methods of generalized Hermitian geometry in the theory of almostcontact manifolds”, J. Math. Sci., vol. 42. pp. 1885–1919 https://doi.org/10.1007/BF01094419.
3. Kirichenko, V. F., Rustanov, A. R., 2002, “Differential geometry of quasi-Sasakian manifolds”, Sbornik: Mathematics, vol.193(8). pp. 1173–1201. http://dx.doi.org/10.1070/SM2002v193n08ABEH000675.
4. Kirichenko, V. F., 2013, “Differential-geometric structures on manifolds”, Odessa: Printing House.
5. Vaisman, I., 1980, “Conformal changes of almost contact metric manifolds”, Lecture Notes in Mathematics. Berlin-Heidelberg-New-York, vol. 792. pp. 435-443.
6. Kharitonova, S. V., 2009, “On the geometry of locally conformally almost cosymplectic manifolds”, Mathematical Notes, vol. 86, pp. 121–131. https://doi.org/10.1134/S0001434609070116.
7. Warner, F., 1987, “Fundamentals of smooth manifolds and Lie group”, M.: Mir.
8. Kobayashi, S., Nomidzu, K. M., 1981, “Fundamentals of differential geometry”, M.: Nauka.
9. Sasaki, S., Hatakeyama, J., 1961, “On differentiable manifolds with certain structures which are closely related to almost contact structure. II”, Tohoku Math. J., vol. 13 (2), pp. 281-294.
10. Rustanov, A. R., 2017, “Integrability properties of 𝑁𝐶10-manifolds ”, Mathematical physics and computer modeling, vol. 20(5), pp. 32-38. https://doi.org/10.15688/mpcm.jvolsu.2017.5.4.
11. Abu-Saleem, A., Rustanov, A. R., Kharitonova, S. V., 2018, “Integrability Properties of Generalized Kenmotsu Manifolds”, Vladikavkaz Mathematical Journal, vol. 20(3). pp.4-20, DOI 10.23671/VNC.2018.3.17829.
Review
For citations:
Rustanov A.R., Polkina E.A., Teplyakova G.V. Integral manifolds of the first fundamental distribution 𝑙𝑐𝐴𝐶𝑆-structure. Chebyshevskii Sbornik. 2022;23(1):142-152. (In Russ.) https://doi.org/10.22405/2226-8383-2022-23-1-142-152