Preview

Chebyshevskii Sbornik

Advanced search

Integral manifolds of the first fundamental distribution 𝑙𝑐𝐴𝐶𝑆-structure

https://doi.org/10.22405/2226-8383-2022-23-1-142-152

Abstract

In paper we consider aspects of the Hermitian geometry of 𝑙𝑐𝐴𝐶𝑆structures. The effect of the vanishing of the Neyenhuis tensor and the associated tensors 𝑁(1), 𝑁(2), 𝑁(3), 𝑁(4) on the class of almost Hermitian structure induced on the first fundamental distribution of 𝑙𝑐𝐴𝐶𝑆structures is investigated. It is proved that the almost Hermitian structure induced on integral manifolds of the first fundamental distribution: 𝑙𝑐𝐴𝐶𝑆-manifolds is a structure of the class 𝑊2 ⊕ 𝑊4,
and it will be almost K¨ahler if and only if 𝑔𝑟𝑎𝑑 𝜎 ⊂ 𝐿(𝜉); an integrable 𝑙𝑐𝐴𝐶𝑆-manifold is a structure of the class 𝑊4; a normal 𝑙𝑐𝐴𝐶𝑆-manifold is a K¨ahler structure; a 𝑙𝑐𝐴𝐶𝑆-manifold for which 𝑁(2)(𝑋, 𝑌 ) = 0, or 𝑁(3)(𝑋) = 0, or 𝑁(4)(𝑋) = 0, is an almost K¨ahler structure in the Gray-Herwell classification of almost Hermitian structures.

About the Authors

Aligaji Rustanov Rustanov
Institut of Digital Technologics and Modeling in Construction; National Research Moscow State University of Civil Engineering
Russian Federation

candidate of physical and mathematical sciences



Elena Aleksandrovna Polkina
Institute of Physics, Technology and Informational Systems; Moscow State Pedagogical University 
Russian Federation

candidate of physical and mathematical sciences



Galina Vasilyevna Teplyakova
Orenburg State University
Russian Federation

candidate of pedagogical sciences



References

1. Blair, D. E. 1976, “Contact manifolds in Riemannian geometry”, Lecture Notes in Mathematics. Springer-Verlag, Berlin, Heidelberg, vol. 509. pp. 1-146.

2. Kirichenko, V. F. 1988, “Methods of generalized Hermitian geometry in the theory of almostcontact manifolds”, J. Math. Sci., vol. 42. pp. 1885–1919 https://doi.org/10.1007/BF01094419.

3. Kirichenko, V. F., Rustanov, A. R., 2002, “Differential geometry of quasi-Sasakian manifolds”, Sbornik: Mathematics, vol.193(8). pp. 1173–1201. http://dx.doi.org/10.1070/SM2002v193n08ABEH000675.

4. Kirichenko, V. F., 2013, “Differential-geometric structures on manifolds”, Odessa: Printing House.

5. Vaisman, I., 1980, “Conformal changes of almost contact metric manifolds”, Lecture Notes in Mathematics. Berlin-Heidelberg-New-York, vol. 792. pp. 435-443.

6. Kharitonova, S. V., 2009, “On the geometry of locally conformally almost cosymplectic manifolds”, Mathematical Notes, vol. 86, pp. 121–131. https://doi.org/10.1134/S0001434609070116.

7. Warner, F., 1987, “Fundamentals of smooth manifolds and Lie group”, M.: Mir.

8. Kobayashi, S., Nomidzu, K. M., 1981, “Fundamentals of differential geometry”, M.: Nauka.

9. Sasaki, S., Hatakeyama, J., 1961, “On differentiable manifolds with certain structures which are closely related to almost contact structure. II”, Tohoku Math. J., vol. 13 (2), pp. 281-294.

10. Rustanov, A. R., 2017, “Integrability properties of 𝑁𝐶10-manifolds ”, Mathematical physics and computer modeling, vol. 20(5), pp. 32-38. https://doi.org/10.15688/mpcm.jvolsu.2017.5.4.

11. Abu-Saleem, A., Rustanov, A. R., Kharitonova, S. V., 2018, “Integrability Properties of Generalized Kenmotsu Manifolds”, Vladikavkaz Mathematical Journal, vol. 20(3). pp.4-20, DOI 10.23671/VNC.2018.3.17829.


Review

For citations:


Rustanov A.R., Polkina E.A., Teplyakova G.V. Integral manifolds of the first fundamental distribution 𝑙𝑐𝐴𝐶𝑆-structure. Chebyshevskii Sbornik. 2022;23(1):142-152. (In Russ.) https://doi.org/10.22405/2226-8383-2022-23-1-142-152

Views: 292


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)