Preview

Chebyshevskii Sbornik

Advanced search

Large system of oscillators with ultralocal stochastic stationary external field influence

https://doi.org/10.22405/2226-8383-2022-23-1-130-141

Abstract

In this paper influence of external force, assumed to be random stationary process, on the
behavior of large Hamiltonian particle systems is studied. The Hamiltonian system is assumed
to have quadratic interaction, and the external influence is assumed to be local. More exactly,
the external force acts on only one fixed particle. Such systems were studed earlier, it is given
short review of the previous papers. In our case, when the external force is a stationary random
process in the wider sense, large time asymptotics of the mean energy of the system is studied.
Main result is the characterization of 4 different cases for the spectrum of the matrix of quadratic
interaction and the spectral density of the correlation function of the stationary random process,
which give different asymptotic behaviour of the trajectories and of the mean energy. Typical
behaviour appears to be either uniform boundedness or quadratic growth of the mean energies.

About the Author

Margarita Vrezhovna Melikian
Lomonosov Moscow State University
Russian Federation

postgraduate student



References

1. Lykov A., Malyshev V., 2017, “From the 𝑁-body problem to Euler equations”, Russian Journal of Mathematical Physics, Maik Nauka/Interperiodica Publishing (Russian Federation), vol. 24, no. 1, pp. 79-95.

2. Lykov A. A., Malyshev V. A., 2012, “Harmonic Chain withWeak Dissipation”, Markov Processes and Related Fields, vol. 18, pp. 1-10.

3. Lykov A. A., Malyshev V. A., Chubarikov V. N., 2016, “Regular continual point particle systems. I: systems without interaction”, Chebyshevskii sbornik, vol. 17, no. 3, pp. 148-165.

4. Lykov A. A., Malyshev V. A., 2013, “Convergence to Gibbs Equilibrium — Unveiling the Mystery”, Markov Processes and Related Fields, vol. 19, pp. 643-666.

5. Lykov A. A., Malyshev V. A., Melikian M. V., 2017, “Phase diagram for one-way traffic flow with local control”, Physica A: Statistical Mechanics and its Applications, Elsevier BV (Netherlands), vol. 486, pp. 849-866.

6. Lykov A., Melikian M., 2020, “Long time behavior of infinite harmonic chain with 𝑙2 initial conditions”, Markov Processes and Related Fields, vol. 26, no. 2, pp. 189-212.

7. Lykov A. A., Malyshev V. A., Melikian M. V., 2021,“Resonance in Large Linear Systems”, Vestnik Mosk. Univ. S. 1. Math. Mech., 3, pp. 74-79.

8. Dobrushin R. L., Fritz J., 1977, “Non-Equilibrium Dynamics of One-dimensional Infinite Particle Systems with a Hard-Core Interaction”, Commun. math. Phys., vol. 55, pp. 275-292.

9. Boldrighini C., Pellegrinotti A., Triolo L., 1983, “Convergence to Stationary States for Infinite Harmonic Systems”, Journal of Statistical Physics, vol. 30, no. 1.

10. Boldrighini C., Dobrushin R. L., Sukhov Yu. M., 1983, “One-Dimensional Hard Rod Caricature of Hydrodynamics”, Journal of Statistical Physics, vol. 31, no. 3, pp.123-155.

11. Dobrushin R. L. , Pellegrinotti A., Suhov Yu. M., Triolo L., 1986, “One-Dimensional Harmonic Lattice Caricature of Hydrodynamics”, Journal of Statistical Physics, vol. 43, 3/4.

12. Bernardin C., Huveneers F. , Olla S., 2019, “Hydrodynamic Limit for a Disordered Harmonic Chain”, Commun. Math. Phys., 365:215.

13. Dyson F. J., 1953, “The dynamics of a disordered linear chain”, Phys. Rev., vol. 92, no. 6, pp. 1331-1338.

14. Matsuda H., Ishii K., 1970, “Localization of normal modes and energy transport in the disordered harmonic chain”, Prog. Theor. Phys. Suppl., vol. 45, pp. 56-88.

15. O’Connor A. J., Lebowitz J. L., 1974, “Heat conduction and sound transmission in isotopically disordered harmonic crystals”, J. Math. Phys., vol. 15, pp. 692-703.

16. Casher A., Lebowitz J. L., 1971, “Heat flow in regular and disordered harmonic chains”, J. Math. Phys., vol. 12, no. 8, pp. 1701-1711.

17. Dudnikova T. V., 2018, “Behavior for Large Time of a Two-Component Chain of Harmonic Oscillators”, Russian Journal of Mathematical Physics, vol. 25, no. 4, pp. 470-491.

18. Dudnikova T., 2016, “Long-time asymptotics of solutions to a hamiltonian system on a lattice”, Journal of Mathematical Sciences, vol. 219, no.1, pp. 69-85.

19. Dudnikova T., Komech A., Spohn H., 2003, “On the convergence to statistical equilibrium for harmonic crystals”, J. Math. Phys., vol. 44, no. 6, pp. 2596-2620.

20. Lykov A. A., 2020, “Energy Growth of Infinite Harmonic Chain under Microscopic Random Influence”, Markov Processes and Related Fields, vol. 26, pp. 287-304.

21. Kuzkin V.A., Krivtsov A. M., 2018, “Energy transfer to a harmonic chain under kinematic and force loadings: Exact and asymptotic solutions”, J. Micromech. and Mol. Phys., vol. 3, pp. 1-2.

22. Hemmen J., 1980, “Dynamics and ergodicity of the infinite harmonic crystal”, Physics Reports, vol. 65, no. 2, pp. 43-149.

23. Fox R., 1983, “Long-time tails and diffusion”, Phys. Rev. A., vol. 27, no. 6, pp. 3216-3233.

24. Florencio J., Lee H., 1985, “Exact time evolution of a classical harmonic-oscillator chain”, Phys. Rev. A., vol. 31, no. 5, pp. 3221-3236.

25. Lanford O., Lebowitz J., 1975, “Time evolution and ergodic properties of harmonic systems”, Dynamical Systems, Theory and Applications, J. Moser (eds), Springer, Berlin, Heidelberg,

26. Lect. Notes Phys., vol. 38, pp. 144-177.

27. Bogolyubov N. N., 1945, “On Some Statistical Methods in Mathematical Physics”, Ac. Sci. USSR, Kiev.

28. Spohn H., Lebowitz J., 1977, “Stationary non-equilibrium states of infinite harmonic systems”, Commun. Math. Phys., vol. 54, pp. 97-120.

29. Filippov A. F., 2007, “Introduction to differential equations theory”, KomKniga, Moscow.


Review

For citations:


Melikian M.V. Large system of oscillators with ultralocal stochastic stationary external field influence. Chebyshevskii Sbornik. 2022;23(1):130-141. (In Russ.) https://doi.org/10.22405/2226-8383-2022-23-1-130-141

Views: 269


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)