Preview

Chebyshevskii Sbornik

Advanced search

The consumption function in the Ramsey–Kass–Koopmans economic growth model in the case of a stationary saving function

https://doi.org/10.22405/2226-8383-2022-23-1-118-129

Abstract

We study the dependence of the functions of capital (resource) and consumption in the Ramsey-Kass-Koopmans economic model in the case when saving is an identical constant.
The system of differential equations describing the evolution of the economic model under consideration is solved in quadratures under the assumptions made. Upper estimates of the consumption function are found based on the obtained solution.

About the Authors

Artem Ivanovich Kozko
Lomonosov Moscow State University; Russian Presidential Academy of National Economy and Public Administration
Russian Federation

candidate of physical and mathematical sciences



Lyubov Mihailovna Luzhina
Lomonosov Moscow State University; Russian Presidential Academy of National Economy and Public Administration
Russian Federation

candidate of physical and mathematical sciences



Anton Yurievich Popov
Lomonosov Moscow State University; Moscow center of fundamental and applied mathematics; Russian Presidential Academy of National Economy and Public Administration
Russian Federation

doctor of physical and mathematical sciences



Vladimir Grirorevich Chirskii
Lomonosov Moscow State University; Russian Presidential Academy of National Economy and Public Administration
Russian Federation

doctor of physical and mathematical sciences



References

1. Acemoglu, Daron. 2009, “The Neoclassical Growth Model. Introduction to Modern Economic Growth“, Princeton: Princeton University Press. pp. 287–326. ISBN 978-0-691-13292-1.

2. B´enassy, Jean-Pascal. 2011. “The Ramsey Model. Macroeconomic Theory“, New York: Oxford University Press. pp. 145–160. ISBN 978-0-19-538771-1.3. Kozko A.I., Luzhina L.M., Popov A.Yu., Chirskii V.G. 2021, “Restrictions on the values of the consumption function in the Ramsey-Kass-Koopmans economic growth model in the case of a stationary saving function“, Chebyshevskii Sbornik. vol. 22(2), pp. 501-509. (In Russ.)

3. https://doi.org/10.22405/2226-8383-2021-22-2-501-509.

4. Kozko A.I., Luzhina L.M., Popov A.Yu., Chirskii V.G. 2019, “Optimal exponent in the Ramsey–Kass–Koopmans problem with logarithmic utility function“, Chebyshevskii Sbornik. vol. 20(4), September, pp. 197-207. (In Russ.) https://doi.org/10.22405/2226-8383-2018-20-4-197-207.

5. Kozko, A. I., Luzhina, L. M., Popov, A. Yu., Chirskii, V. G. 2020, “On the Ramsey-Kass-Koopmans problem for consumer choice“, Results of science and technology. Modernmathematics and its applications. Thematic review. vol. 182, September, pp. 39-44. (In Russ.) DOI: 10.36535/0233-6723-2020-182-39-44.

6. Kozko, A. I., Luzhina, L. M., Popov, A. Yu., Chirskii, V. G. 2019, The model of the problem Ramsey-Kass-Koopmans // Moscow state pedagogical University (Moscow). Classical and modern geometry, materials of the international conference dedicated to the 100th anniversary of V. T. Bazylev. under the editorship of A. V. Tsarev. Moscow. pp. 87-88.

7. Kozko A.I., Luzhina L.M., Popov A.Yu., Chirskii V.G. 2019, “Assessment of the necessary initial economic resource in the Ramsey–Kass–Koopmans problem“, Chebyshevskii Sbornik. vol. 20(4), September, pp. 188-196. (In Russ.) https://doi.org/10.22405/2226-8383-2018-20-4-188-196.

8. Rahul, Giri, 2018, “Growth Model with Endogenous Savings: Ramsey-Cass-Koopmans Model“, http://ciep.itam.mx/˜rahul.giri/uploads/1/1/3/6/113608/ramsey-cass-koopmans_model.pdf.

9. Barro, Robert J., Sala-i-Martin, Xavier. 2003, “Economic growth (2nd ed.)“, Massachusetts: MIT Press, ISBN 9780262025539.

10. Groth, Christian and Koch, Karl-Josef and Steger, Thomas Michael. 2006, “Rethinking the Concept of Long-Run Economic Growth (April 2006)“, CESifo Working Paper Series No. 1701. Available at SSRN: https://ssrn.com/abstract=899250

11. Groth, Christian and Koch, Karl-Josef and Steger, Thomas Michael. “When Economic Growth is Less than Exponential“, 2010. Economic Theory, vol. 44, no. 2, 2010.

12. Groth, C. 2010, “Chapter 10: The Ramsey Model”, Available at: http://web.econ.ku.dk/okocg/VV/VV-2010/Lecture%20notes/Ch7-2010-1.pdf.

13. Romer, D. “Advanced Macroeconomics. 3rd ed“, New York: McGraw-Hill/Irwin, 2006. pp. 651.

14. Robert J. Barro. 1999. “Ramsey Meets Laibson in the Neoclassical Growth Model“, The Quarterly Journal of Economics, Oxford University Press, vol. 114, no. 4, pp. 1125-1152.

15. Douglas, Paul H. 1972. “In the Fullness of Time: The Memoirs of Paul H. Douglas“, New York, Harcourt Brace Jovanovich.

16. King Robert, G., and Sergio Rebelo. 1993, “Transitional Dynamics and Economic Growth in the Neoclassical Model“, American Economic Review. vol. 83, September, pp. 908-931.

17. Pierre-Olivier, Gourinchas. 2014, “Notes for Econ202A: The Ramsey-Cass-Koopmans Model“,UC Berkeley Fall, https://eml.berkeley.edu/˜webfac/gourinchas/e202a_f14/Notes_Ramsey_Cass_Koopmans_pog.pdf.

18. Akaev A.A., Sadovnichii V.A. 2019. “On the choice of mathematical models for describing thedynamics of digital economy“ Differential Equations. 2019. vol. 55, no. 5. pp. 729-738.

19. G´omez, M. A. 2018. “Economic growth and factor substitution with elastic labor supply“ Math.Social Sci., 94, pp. 49-57.

20. G´omez, M. A. 2018. “Factor substitution and convergence speed in the neoclassical model with elastic labor supply“ Economics Letters 172, pp. 89-92.


Review

For citations:


Kozko A.I., Luzhina L.M., Popov A.Yu., Chirskii V.G. The consumption function in the Ramsey–Kass–Koopmans economic growth model in the case of a stationary saving function. Chebyshevskii Sbornik. 2022;23(1):118-129. (In Russ.) https://doi.org/10.22405/2226-8383-2022-23-1-118-129

Views: 453


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)